Introduction to the theory of bushes of nonlinear normal modes for studying large-amplitude atomic vibrations in systems with discrete symmetry

G.M. Chechin, D.S. Ryabov show affiliations and emails
Received 02 June 2020; Accepted 27 August 2020;
Citation: G.M. Chechin, D.S. Ryabov. Introduction to the theory of bushes of nonlinear normal modes for studying large-amplitude atomic vibrations in systems with discrete symmetry. Lett. Mater., 2020, 10(4) 523-534
BibTex   https://doi.org/10.22226/2410-3535-2020-4-523-534

Abstract

The group-theoretical classification of atomic vibrations in molecular and crystal structures is discussed. Wigner’s classification, which is valid for small-amplitude  oscillations, is generalized to the case of oscillations with  arbitrary amplitudes. An elementary introduction to the theory of bushes of nonlinear  normal modes is given.The research group from the Rostov State University has been developing the theory of bushes of nonlinear normal modes (NNMs) in Hamiltonian systems with discrete symmetry since the late 90s of the last century. Group-theoretical methods for studying large-amplitude atomic vibrations in molecular and crystal structures were developed. Each bush represents a certain collection of vibrational modes, which do not change in time despite the time evolution of these modes, and the energy of the initial excitation remains trapped in the bush. Any bush is characterized by its symmetry group, which is a subgroup of the system’s symmetry group. The modes contained in the given bush are determined by symmetry-related methods and do not depend on the interatomic interactions in the considered system. The irreducible representations of the point and space groups are essentially used in the theory of the bushes of NNMs, and this theory can be considered as a generalization of the well-known Wigner classification of the small-amplitude vibrations in molecules and crystals for the case of large-amplitudes vibrations. Since using of the irreducible representations of the symmetry groups can be an obstacle to an initial familiarization with the bush theory, in the present review, we explain the basic concepts of this theory only with the aid of the ordinary normal modes, which is well known from the standard textbooks considering the theory of small atomic vibrations in mechanical systems. Our description is based on the example of plane nonlinear atomic vibrations of a simple square molecule.

References (53)

1. E. Wigner. Über de elastischen Eigenschwingungen symmetrischer Systeme. Nachricht. Akad. Wiss. Göttingen, Math.-Phys. Kl., Berlin (1930) p. 133 -146.
2. A. M. Lyapunov. The General Problem of the Stability of Motion. London, Taylor & Francis (1992) 280 p.
3. A. H. Nayfeh, D. T. Mook. Nonlinear Oscillations. New York, Wiley (1979) 720 p.
4. S. Flach, M. V. Ivanchenko, O. I. Kanakov. Phys. Rev. Lett. 95, 064102 (2005). Crossref
5. J. H. Reisland. The Physics of Phonons. London, Wiley (1973) 319 p.
6. J. A. Montaldi, R. M. Roberts, I. N. Stewart. Phil. Trans. Roy. Soc. London. 325, 237 (1988). Crossref
7. G. M. Chechin, V. P. Sakhnenko. Phys. D. 117, 43 (1998). Crossref
8. R. M. Rosenberg. J. Appl. Mech. 29, 7 (1962). Crossref
9. R. M. Rosenberg. Adv. Appl. Mech. 9, 155 (1966). Crossref
10. L. Manevich, Y. Mikhlin, V. Pilipchuk. The Method of Normal Oscillation for Essentially Nonlinear Systems. Moscow, Nauka (1989) 215 p. (in Russian) [Л. И. Маневич, Ю. В. Михлин, В. Н. Пилипчук. Метод нормальных колебаний для существенно нелинейных систем. Москва, Наука (1989) 215 с.].
11. A. F. Vakakis, L. I. Manevitch, Yu. V. Mikhlin, V. N. Pilipchuk, A. A. Zevin. Normal modes and localization in nonlinear systems. New York, Wiley (1996) 552 p. Crossref
12. Yu. V. Mikhlin, K. V. Avramov. Review of Theoretical Developments. Appl. Mech. Rev. 63, 060802 (2010). Crossref
13. K. V. Avramov, Yu. V. Mikhlin. Appl. Mech. Rev. 65, 020801 (2013). Crossref
14. V. P. Sakhnenko, G. M. Chechin. Symmetrical selection rules in nonlinear dynamics of atomic systems. Phys. Dokl. 38, 219 (1993).
15. A. K. Mishra, M. C. Singh. Int. J. Non-Linear Mech. 9, 463 (1974). Crossref
16. L. D. Landau, E. M. Lifshitz. Course of Theoretical Physics. Vol. 5: Statistical Physics. 3rd ed. Oxford, Pergamon Press (1980) 564 p.
17. G. Chechin, T. Ivanova, V. Sakhnenko. Phys. stat. sol. (b) 152, 431 (1989). Crossref
18. G. M. Chechin, E. A. Ipatova, V. P. Sakhnenko. Acta Cryst. A49, 824 (1993). Crossref
19. G. M. Chechin. Comp. Math. Appl. 17, 255 (1989). Crossref
20. V. P. Sakhnenko, G. M. Chechin, Bushes of modes and normal modes for nonlinear dynamical systems with discrete symmetry. Phys. Dokl. 39, 625 (1994).
21. H. T. Stokes, D. M. Hatch, B. J. Campbell, ISOTROPY Software Suite. https://iso.byu.edu/.
22. H. T. Stokes, A. D. Smith, D. M. Hatch, G. M. Chechin, V. P. Sakhnenko. APS Meeting Abstracts. 3, B3 (1998).
23. G. M. Chechin, V. P. Sakhnenko, H. T. Stokes, A. D. Smith, D. M. Hatch. Int. J. Non-Linear Mech. 35, 497 (2000). Crossref
24. G. M. Chechin, O. A. Lavrova, V. P. Sakhnenko, H. T. Stokes, D. M. Hatch. Phys. Solid State. 44, 581 (2002). Crossref
25. E. Fermi, J. R. Pasta, S. Ulam, Studies of Nonlinear Problems. Los Alamos Scientific Laboratory Report LA-1940 (1955). Reproduced in: Lecture Notes in Applied Mathematics. 15, 14 (AMS, 1974).
26. N. J. Zabusky, M. D. Kruskal. Phys. Rev. Lett. 15, 240 (1965). Crossref
27. F. Verhulst, Variations on the Fermi-Pasta-Ulam chain, a survey. eprint arXiv:2003.09156 (2020).
28. V. A. Kuzkin, A. M. Krivtsov. Phys. Rev. E. 101, 042209 (2020). Crossref
29. P. Poggi, S. Ruffo. Physica D. 103, 251 (1997). Crossref
30. S. Shinohara. Progr. Theor. Phys. Suppl. 150, 423 (2003). Crossref
31. G. M. Chechin, N. V. Novikova, A. A. Abramenko. Phys. D. 166, 208 (2002). Crossref
32. G. M. Chechin, D. S. Ryabov, K. G. Zhukov. Phys. D. 203, 121 (2005). Crossref
33. L. I. Manevitch, M. A. Pinsky. Izv. AN SSSR MTT. 7, 43 (1972). (in Russian) [Л.И. Маневич, М.А. Пинский. Об использовании симметрии для расчета нелинейных колебаний. Изв. АН СССР серия МТТ. 7, 43 (1972).].
34. B. Rink, F. Verhulst. Physica A. 285, 467 (2000). Crossref
35. B. Rink. Comm. Math. Phys. 218, 665 (2001). Crossref
36. B. Rink. Physica D. 175, 31 (2003). Crossref
37. E. A. Korznikova, S. A. Shcherbinin, D. S. Ryabov, G. M. Chechin, E. G. Ekomasov, E. Barani, K. Zhou, S. V. Dmitriev. Phys. Stat. Sol. B. 256, 1800061 (2019). Crossref
38. S. A. Shcherbinin, M. N. Semenova, A. S. Semenov, E. A. Korznikova, G. M. Chechin, S. V. Dmitriev. Phys. Solid State. 61, 2139 (2019). Crossref
39. W. Kohn. Rev. Mod. Phys. 71, 1253 (1999). Crossref
40. G. Chechin, D. Ryabov, S. Shcherbinin. Lett. Mater. 7(4), 367 (2017). Crossref
41. G. Chechin, D. Ryabov, S. Shcherbinin. Phys. Rev. E. 92, 012907 (2015). Crossref
42. G. Chechin, D. Ryabov, S. Shcherbinin. Lett. Mater. 6(1), 9 (2016). Crossref
43. G. Chechin, D. Ryabov, S. Shcherbinin. J. Mic. Molec. Phys. 3, 1850002 (2018). Crossref
44. L. D. Landau, E. M. Lifshitz. Course of Theoretical Physics. Vol. 1: Mechanics. 3rd ed. Oxford, Pergamon Press (1976) 198 p.
45. G. M. Chechin, K. G. Zhukov. Phys. Rev. E. 73, 036216 (2006). Crossref
46. G. M. Chechin, D. S. Ryabov. Phys. Rev. E. 85, 056601 (2012). Crossref
47. G. L. Bir and G. E. Pikus. Symmetry and Strain-Induced Effects in Semiconductors. New York, Wiley (1974) 484 p.
48. O. V. Kovalev. Representations of the Crystallographic Space Groups: Irreducible Representations; Induced Representations and Corepresentations, 2nd edn., ed. H. T. Stokes and D. M. Hatch. London, Gordon and Breach (1993) 349 p.
49. M. I. Petrashen, E. D. Trifonov. Applications of Group Theory in Quantum Mechanics. Cambridge, MIT Press (1969) 318 p.
50. G. M. Chechin, D. S. Ryabov. Phys. Rev. E. 69, 036202 (2004). Crossref
51. G. S. Bezuglova, G. M. Chechin, P. P. Goncharov. Phys. Rev. E. 84, 036606 (2011). Crossref
52. G. M. Chechin, D. S. Ryabov, V. P. Sakhnenko, Bushes of normal modes as exact excitations in nonlinear dynamical systems with discrete symmetry. In: Nonlinear Phenomena Research Perspectives (ed. by C. W. Wang). New York, Nova Science (2007) 454 p.
53. T. Bountis, G. Chechin, V. Sakhnenko. Int. J. Bif. Chaos 21, 1539 (2011). Crossref

Funding

1. Ministry of Science and Higher Education of the Russian Federation - State assignment in the field of scientific activity, Southern Federal University, 2020