The use of fractal geometry for the thermodynamic description of the three-dimensional elements of the crystal structure

Received 25 April 2012; Accepted 01 July 2012;
This paper is written in Russian
Citation: V.B. Fedoseev. The use of fractal geometry for the thermodynamic description of the three-dimensional elements of the crystal structure. Lett. Mater., 2012, 2(2) 78-83
BibTex   https://doi.org/10.22226/2410-3535-2012-2-78-83

Abstract

In this paper are described the thermodynamic regularities of distribution of the dispersed particles of the size of a given geometric shape. An ensemble of grains of the polycrystal is considered as a disperse system. We describe the equilibrium distribution of grain size and grain shape. It's argued that the fractal dimension and multifractality of polydisperse systems are determined by thermodynamic conditions and material properties and can be regarded as a thermodynamic charac-teristic, of dispersed system. It is shown that with the increasing temperature of crystalline material, the average fractal dimension of the three-dimensional elements of the structure is reduced.

References (22)

1. B.M. Smirnov. Fizika Fraktal’nykh Klasterov (The Physicsof Fractal Clusters), Moscow: Nauka (1991) 136 p. (inRussian).
2. V.I. Roldughin. Russ. Chem. Rev. 72(10), 823 (2003).
3. A.I. Olemskoi, A.Ya. Flat. Phys. Usp. 36(12), 1087 (1993).
4. P. Gaspard. Bulletin de la classe des Sciences de l’Académieroyale de Belgique, 6e série, XI, 9 (2000).
5. A. Balankin. Revista Mexicana de Física. 40(4), 506(1994).
6. V.B. Fedoseev. Nelineinyi Mir 7(10), 782 (2009), (inRussian).
7. V.B. Fedoseev. Butlerovskie soobschenija 23(14), 36(2010), (in Russian).
8. V.B. Fedoseev. Zhurnal Fizicheskoi Khimii 63(11), 3070(1989), (in Russian).
9. V.B. Fedoseev. Vestnik Kazanskogo tehnologicheskogouniversiteta 1, 62 (2010), (in Russian).
10. V.B. Fedoseev. Poverhnost’. Fizika. Himiya. Mehanika. 7, 114 (1990), (in Russian).
11. G.E. Andrews. The Theory of Partitions (Encyclopediaof Mathematics and Its Applications, Vol.2). London.Addison-Wesley Publ. Company, XIV (1976) 255 p.
12. V.B. Fedoseev, E.N. Fedoseeva. Prikladnaya mehanika i tehnologii mashinostroeniya. N.Novgorod: Intelservis1(8), 110 (2005), (in Russian).
13. A.A. Smirnov. Teoriya splavov vnedreniya. M.: Nauka(1979) 365 p. (in Russian).
14. W. Kung. Geometry and Phase Transitions in Colloidsand Polymers. Singapore: World Scientific (2009) 191 p.
15. R. Kronover. Fraktaly i haos v dinamicheskih sistemah.M.: Postmarket (2000) 352 p. (in Russian).
16. M. Zou, B. Yu, Y. Feng. Physica A386(1), 176 (2007).
17. M.R. Brown, R. Errington, P. Rees. Physica D239(12), 1061 (2010).
18. D. McLean. Grain Boundaries in Metals, OxfordUniversity Press, London (1957) [Russian translation:D. McLean. Grain Boundaries in Metals. Moscow:Metallurgizdat (1960) 322 p. (in Russian)].
19. T.I. Chashchukhina, L.M. Voronova, M.V. Degtyarev.Bull. Russ. Acad. Sci.: Physics. 71(2), 275 (2007), (inRussian).
20. V. Cherkasskaya, R. Kujel, I.E. Procenko, Ya. Chijek., Z.Matei. Visnik SumDU. 6(90), 93 (2006), (in Russian).
21. V.S. Ivanova, A.S. Balankin, I.J. Bunin, A.A. Oksogoev.Sinergetika i fraktaly v materialovedenii. M.: Nauka(1994) 384 p. (in Russian).
22. S.V. Bojokin, D.A. Parshin. Fraktaly mul’tifraktaly. Ijevsk:NIC «Regulyarnaya i haoticheskaya dinamika» (2001)128 p. (in Russian).

Cited by (3)

1.
Alexander V. Shishulin, Victor B. Fedoseev. Journal of Molecular Liquids. 278, 363 (2019). Crossref
2.
Alexander V. Shishulin, Alexander A. Potapov, Anna V. Shishulina. Springer Proceedings in Complexity: 14th Chaotic Modeling and Simulation International Conference, Chapter 30, p.421 (2022). Crossref
3.
Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Ukr. J. Phys. 67(6), 463 (2022). Crossref