Formation of structural states in mechanically activated powder mixtures Ti + Al exposed to gamma irradiation

M.V. Loginova, V.I. Yakovlev, V.Y. Filimonov, A.A. Sitnikov, A.V. Sobachkin, S.G. Ivanov, A.V. Gradoboev

Abstract

In this paper by X-ray diffraction and optical microscopy was made experimental study of structural state changes in components of mechanically activated Ti + Al powder mixture, irradiated with γ-quanta 60Co.In this paper an experimental study of structural state changes in components of mechanically activated Ti + Al powder mixture was made, irradiated with γ-quanta 60Co. As a research object titanium powder with an average particle size of 80 μm and aluminum powder with an average size of 20 μm were selected. The initial mixture corresponded to stoichiometric composition of compound TiAl (Ti-36 wt.% Al) .A planetary ball mill AGO-2 was used for mechanical activation of powder mixture. Level of impact of γ-quanta was determined by absorbed doses Dγ [Gy], which increased during experiment from 1103 to 2104 Gy. The dependencies between structure parameters, sizes of coherent scattering regions, microstrains of components of mechanically activated mixture and absorbed dose were established. The influence of γ-irradiation on structural state of the components of mechanically activated mixture depends on irradiation dose. Irradiation with γ-quanta of mechanically activated Ti + Al mixture leads to partial annealing of defects in considered range of absorbed dose , while nanosized scale of coherent scattering of crystallites is preserved. The changes in characteristic microstructure of Ti + Al powder mixture were established depending on absorbed dose of γ-quanta. Small fragments of composites with irregular shape gradually disappeared with increasing radiation dose, but large particles formed, their shapes became more rounded. Particles coagulate in accordance with radiation sintering mechanism, the system had tendency to enlarge structure elements; the structure of mechanical composites became more uniform, both due to low-temperature sintering, and due to influence of γ-irradiation.

References (31)

1.
T. F. Grigorieva, A. P. Barinova, N. Z. Lyakhov. Russian Chemical Reviews. 70(1), 52 (2001). (in Russian) [Т. Ф. Григорьева, А. П. Баринова, Н. З. Ляхов. Успехи химии. 70(1), 52 (2001).]
2.
Ed. by E. G. Avvakumov. Fundamental bases of mechanical activation, mechanosynthesis and mechanochemical technologies. Novosibirsk, SB RAS (2009) 343 p. (in Russian) [Отв. ред. Е. Г. Аввакумов. Фундаментальные основы механической активации, механосинтеза и механохимических технологий. Новосибирск, СО РАН (2009) 343 с.]
3.
V. V. Boldyrev, K. Tkacova. Journal of Materials Synthesis and Processing. 8(3), 121 (2000). DOI: 10.1023/A:1011347706721
4.
A. V. Sobachkin, А. А. Sitnikov, А. P. Sviridov. Applied Mechanics and Materials. 698, 374 (2015). DOI: 10.4028/www.scientific.net/AMM.698.374
5.
S. T. Konobeevskij. Effect of irradiation on materials. Moscow, Atomizdat (1967) 401 p. (in Russian) [С. Т. Конобеевский. Действие облучения на материалы. Москва, Атомиздат (1967) 401 с.]
6.
A. P. Mamontov, I. P. Chernov. Effect of low doses of ionizing radiation. Moscow, Energoatomizdat (2001) 286 p. (in Russian) [А. П. Мамонтов, И. П. Чернов. Эффект малых доз ионизирующего излучения. Москва, Энергоатомиздат (2001) 286 с.]
7.
K. V. Lejman. Interaction of radiation with a solid and formation of elementary defects. Moscow, Atomizdat (1979) 296 p. (in Russian) [К. В. Лейман. Взаимодействие излучения с твердым телом и образование элементарных дефектов. Москва, Атомиздат (1979) 296 с.]
8.
A. V. Gradoboev, K. N. Orlova, K. P. Aref’ev, I. A. Asanov. Russian Physics Journal. 56(11-3), 116 (2013). (in Russian) [А. В. Градобоев, К. Н. Орлова, К. П. Арефьев, И. А. Асанов. Известия вузов. Физика. 56(11-3), 116 (2013).]
9.
M. V. Loginova, V. I. Yakovlev, A. A. Sitnikov, A. V. Sobachkin, S. G. Ivanov, A. Z. Negodyaev, A. V. Gradoboev. Physics of Metals and Metallography. 118(2), 170 (2017). DOI: 10.1134/S0031918X17020089
10.
V. V. Kirsanov, A. L. Suvorov, Ju. V. Trushin. Processes of radiation defect formation in metals. Moscow, Energoatomizdat (1985) 272 p. (in Russian) [В. В. Кирсанов, А. Л. Суворов, Ю. В. Трушин. Процессы радиационного дефектообразования в металлах. Москва, Энергоатомиздат (1985) 272 с.]
11.
Sh. Sh. Ibragimov, V. V. Kirsanov, Ju. S. Pjatiletov. Radiation damages of metals and alloys. Moscow, Energoatomizdat (1985) 240 p. (in Russian) [Ш. Ш. Ибрагимов, В. В. Кирсанов, Ю. С. Пятилетов. Радиационные повреждения металлов и сплавов. Москва, Энергоатомиздат (1985) 240 с.]
12.
U. Cvikker. Titanium and its alloys. Moscow, Metallurgija (1979) 512 p. (in Russian) [У. Цвиккер. Титан и его сплавы. Москва, Металлургия (1979) 512 с.]
13.
K. Kothari, R. Radhakrishnan, N. M. Wereley, T. S. Sudarshan. Powder Metallurgy. 50(1), 21 (2007). DOI: 10.1179/174329007X186471
14.
S. P. Pavlinich, M. V. Zajcev. Bulletin USATU. 15(4), 200 (2011). (in Russian) [С. П. Павлинич, М. В. Зайцев. Вестник УГАТУ. 15(4), 200 (2011).]
15.
F. Bernard, H. Souha, E. Gaffet. Material Science and Engeneering A. 284, 301 (2000). DOI: 10.1016/S0921-5093(00)00749-8
16.
V. Yu. Filimonov, A. A. Sitnikov, A. V. Afanas’ev, M. V. Loginova, V. I. Yakovlev, A. Z. Negodyaev, D. V. Schreifer, V. A. Solov’ev. International Journal of Self Propagating High Temperature Synthesis. 23(1), 18 (2014). DOI: 10.3103/S1061386214010038
17.
V. Yu. Filimonov. Current Opinion in Chemical Engineer-ing. 3, 18 (2014). DOI: 10.1016/j.coche.2013.08.011
18.
P. Angerera, L. G. Yua, K. A. Khorb, G. Krumpela. Materials Science and Engineering A. 381(1-2), 16 (2004). DOI: 10.1016/j.msea.2004.02.009
19.
A. V. Smirnov, D. I. Yushin, N. W Solis Pinargote., P. Yu Peretyagin., R. Torrecillas. Russian Engineering Research. 36(3), 249 (2016). DOI: 10.3103/S1068798X16030163
20.
Ed. By O. I. Lomovskij. Mechanocomposites-precursors for creating materials with new properties. Novosibirsk, SB RAS (2010) 424 p. (in Russian) [Отв. ред. О. И. Ломовский. Механокомпозиты-прекурсоры для создания материалов с новыми свойствами. Новосибирск, СО РАН (2010) 424 с.]
21.
V. Yu. Filimonov, M. A. Korchagin, E. V. Smirnov, A. A. Sytnikov, V. I. Yakovlev, N. Z. Lyakhov. Intermetallics. 19(7), 833 (2011). DOI: 10.1016/j.intermet.2010.11.028
22.
A. A. Popova, A. V. Sobachkin, I. V. Nazarov, V. I. Yakovlev, M. V. Loginova, A. A. Sitnikov, M. R. Sharafutdinov, N. Z. Lyakhov. Bulletin of the Russian Academy of Sciences. Physics. 77(2), 120 (2013). DOI: 10.3103/S1062873813020275
23.
M. V. Loginova, V. Yu. Filimonov, V. I. Yakovlev, A. A. Sitnikov, A. Z. Negodyaev, D. V. Shreifer. Applied Mechanics and Materials. 788, 117 (2015). DOI: 10.4028/www.scientific.net/AMM.788.117
24.
A. M. Shalaev. Structure and properties of metals and alloys. Properties of irradiated metals and alloys. Kiev, Naukova Dumka (1985) 307 p. (in Russian) [А. М. Шалаев. Структура и свойства металлов и сплавов. Свойства облученных металлов и сплавов. Киев, Наукова Думка (1985) 307 с.]
25.
R. A. Andrievskij. Physics of Metals and Metallography. 110(3), 243 (2010). (in Russian) [Р. А. Андриевский. Физика металлов и металловедение. 110(3), 243 (2010).]
26.
I. S. Martynov, V. V. Krasil’nikov, I. N. Perepelkin, V. V. Ruzhitsky, Yasser El’ Gendy. Problems of atomic science and technology. 1, 49 (2006). (in Russian) [И. С. Мартынов, В. В. Красильников, И. Н. Перепелкин, В. В. Ружицкий, Я. Э. Генди. Вопросы атомной науки и техники. 1, 49 (2006).]
27.
A. N. Dovbnya, V. A. Mats, V. I. Sokolenko. Problems of atomic science and technology. 5, 36 (2012). (in Russian) [А. Н. Довбня, В. А. Мац, В. И. Соколенко. Вопросы атомной науки и техники. 5, 36 (2012).]
28.
A. I. Gusev. Nanomaterials, nanostructures, nanotech-nologies. Moscow, Fizmatlit (2007) 416 p. (in Russian) [А. И. Гусев. Наноматериалы, наноструктуры, нанотехнологии. Москва, Физматлит (2007) 416 с.]
29.
Ju. M. Annenkov, A. S. Ivashutenko. Bulletin TPU. 308(7), 30 (2005). (in Russian) [Ю. М. Анненков, А. С. Ивашутенко. Известия ТПУ. 308(7), 30 (2005).]
30.
O. L. Hasanov, Je. S. Dvilis, Z. G. Bikbaeva. Methods of compacting and consolidating nanostructured materials and products. Tomsk, TPU (2008) 212 p. (in Russian) [О. Л. Хасанов, Э. С. Двилис, З. Г. Бикбаева. Методы компактирования и консолидации наноструктурных материалов и изделий. Томск, ТПУ (2008) 212 с.]
31.
M. I. Lerner, G. G. Savel’ev, N. V. Svarovskaja, A. I. Galanov. Bulletin TPU. 309, 69 (2006). (in Russian) [М. И. Лернер, Г. Г. Савельев, Н. В. Сваровская, А. И. Галанов. Известия ТПУ. 309, 69 (2006).]