Effect of DFT-functional on the energy and electronic characteristics of carbon compounds with the unconventional geometry of the framework

N. Novikov, M. Maslov, K. Katin, V. Prudkovskiy
Received: 17 October 2017; Revised: 31 October 2017; Accepted: 08 November 2017
Citation: N. Novikov, M. Maslov, K. Katin, V. Prudkovskiy. Effect of DFT-functional on the energy and electronic characteristics of carbon compounds with the unconventional geometry of the framework. Letters on Materials, 2017, 7(4) 433-436
BibTex   DOI: 10.22226/2410-3535-2017-4-433-436

Abstract

The values of binding energies of carbon nanostructures with the nonconventional geometry of framework calculated using the density functional theory can substantially differ from each other depending on the chosen DFT-functional.We report how strongly the energy and electronic properties of carbon nanostructures with the unconventional framework calculated by means of density functional theory (DFT) depend on the choice of DFT-functional on the example of carbon [n,5]prismanes. For comparative analysis we used such characteristics of molecular system as the values of binding energy and energy difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gap). We obtained the binding energies and HOMO-LUMO gaps using seven different functionals B3LYP, X3LYP, M11, B3PW91, PBE0, PW, PBE, which belong to generalized gradient approximation and hybrid functionals, and standard 6-31G(d) electronic basis set. We show that the binding energies obtained for the long [n,5]prismanes with the efficient length of ~150 Å within the various DFT-functionals can differ by a factor of 1.1, and corresponding HOMO-LUMO gaps can differ by a factor of 23. Additional precision calculations at CCSD(T) level of theory of [2,5]prismane allow us to conclude that for determining the binding energies of carbon nanostructures with the unconventional framework, the hybrid functionals B3LYP, X3LYP, and M11 are the best choice, whereas for the HOMO-LUMO gap estimation M11 gives the closest to CCSD(T) result. The reported study is of methodological interest for carrying out the correct DFT-calculations with respect to novel nanomaterials with unconventional carbon framework such as hypercubane system, fullerene composites or pillared graphene.

References (23)

1.
R. G. Parr, W. Yang. Density-Functional Theory of Atoms and Molecules. NY: Oxford University Press (1990) 333 p.
2.
G. S. Manyali. IOSR Journal of Applied Physics 8, 54 – 58 (2016), DOI: 10.9790/4861-08135458
3.
G. Zhang, C. B. Musgrave. J. Phys. Chem. A 111, 1554 – 1561 (2007), DOI: 10.1021/jp061633o
4.
E. A. Belenkov, M. M. Brzhezinskaya, V. A. Greshnyakov. Nanosystems: Physics, Chemistry, Mathematics 8, 127 – 136 (2017), DOI: 10.17586/2220‑8054‑2017‑8‑1‑127‑136
5.
E. A. Belenkov, V. A. Greshnyakov. J. Mater. Sci. 50, 7627 – 7635 (2015), DOI: 10.1007/s10853‑015‑9325‑1
6.
K. A. Krylova, Yu. A. Baimova, S. V. Dmitriev, R. R. Mulyukov. Phys. Solid State 58, 394 – 401 (2016), DOI: 10.1134/S1063783416020189
7.
R. A. Brazhe, A. I. Kochaev, V. S. Nefedov. Phys. Solid State 54, 1430 – 1432 (2012), DOI: 10.1134/S1063783412070098
8.
M. M. Maslov, K. P. Katin, A. I. Avkhadieva, A. I. Podlivaev. Russ. J. Phys. Chem. B 8, 152 – 157 (2014), DOI: 10.1134/S1990793114020195
9.
K. P. Katin, M. M. Maslov. J. Phys. Chem. Solids 108, 82 – 87 (2017), DOI: 10.1016/j.jpcs.2017.04.020
10.
R. M. Minyaev, V. I. Minkin, T. N. Gribanova, A. G. Starikov, R. Hoffmann. J. Org. Chem. 68, 8588 – 8594 (2003), DOI: 10.1021/jo034910l
11.
K. P. Katin, S. A. Shostachenko, A. I. Avkhadieva, M. M. Maslov. Adv. Phys. Chem. 2015, 506894 (2015), DOI: 10.1155/2015/506894
12.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery. J. Comp. Chem. 14, 1347 – 1363 (1993), DOI: 10.1002/jcc.540141112
13.
J. P. Perdew, J. A. Chevray, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais. Phys. Rev. B 46, 6671 – 6687 (1992), DOI: 10.1103/PhysRevB.46.6671
14.
J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 – 3868 (1996), DOI: 10.1103/PhysRevLett.77.3865
15.
C. Lee, W. Yang, R. G. Parr. Phys. Rev. B 37, 785 (1988), DOI: 10.1103/PhysRevB.37.785
16.
A. D. Becke. J. Chem. Phys. 98, 5648 (1993), DOI: 10.1063/1.464913
17.
X. Xu, Q. Zhang, R. P. Muller, W. A. Goddard. J. Chem. Phys. 122, 014105 (2005), DOI: 10.1063/1.1812257
18.
R. Peverati, D. G. Truhlar. J. Phys. Chem. Lett. 2, 2810 – 2817 (2011), DOI: 10.1021/jz201170d
19.
C. Adamo, V. Barone. J. Chem. Phys. 110, 6158 – 6170 (1999), DOI: 10.1063/1.478522
20.
R. Ditchfield, W. J. Hehre, J. A. Pople. J. Chem. Phys. 54, 724 (1971), DOI: 10.1063/1.1674902
21.
R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72, 650 (1980), DOI: 10.1063/1.438955
22.
SciDAVis — Scientific Data Analysis and Visualization: scidavis.sourceforge.net
23.
T. Helgaker, P. Jorgensen, J. Olsen. Molecular Electronic-Structure Theory. Wiley: New York (2000) P. 793-796.