An approach to the computation of effective strength characteristics of porous materials

V.A. Levin, I.I. Vdodichenko, A.V. Vershinin, M.Y. Yakovlev, K.M. Zingerman show affiliations and emails
Received 21 September 2017; Accepted 31 October 2017;
Citation: V.A. Levin, I.I. Vdodichenko, A.V. Vershinin, M.Y. Yakovlev, K.M. Zingerman. An approach to the computation of effective strength characteristics of porous materials. Lett. Mater., 2017, 7(4) 452-454
BibTex   https://doi.org/10.22226/2410-3535-2017-4-452-454

Abstract

The set of points of strength surface in the space of principal stresses is determined for 2D case. The approximation of this set of points permits one to obtain the strength criterion in the analytical form.An approach to the computation of effective strength characteristics of porous materials is developed. The approach is implemented for 2D problems (plane strain) within the scope of linear elasticity. The approach can be generalized for 3D problems and nonlinear elasticity. The specific features of the proposed approach are as follows. The representative area of the material is specified. The representative area contains pores. A series of boundary-value problems is solved under periodical boundary conditions for different types of deformation of the external boundary. The finite element method is used for solution. The averaging of stresses is performed for each problem, and the principal values of averaged stresses are computed. The maximal value of the stress intensity over the representative area is computed. The principal values of stresses at which fracture occurs are computed. By this way, a point on a plane of principal stresses is determined; this point corresponds to the specified boundary-value problem. A set of such points is formed for the series of boundary-value problems, and the boundary points of this set are determined. The obtained set of boundary points is approximated by a polygonal line. The parameters of segments of this polygonal line are computed. This computation permits one to obtain a macroscopic strength criterion in analytical form. The obtained relations can be further reduced to the form of the Mohr-Coulomb criterion. The numerical results are given in the paper for a particular case in which the representative area is a square containing a centered elliptical hole.

References (15)

1. T. I. Nazarova, V. M. Imaev, R. M. Imaev, R. R. Mulyukov. The Physics of Metals and Metallography. 117 (10), 1038 - 1046 (2016). Crossref
2. I. F. Obraztsov, A. N. Vlasov, Yu. G. Yanovsky. Doklady Physics, 51 (1), 44 - 47 (2006). Crossref
3. A. N. Vlasov, V. P. Merzlyakov, S. B. Ukhov. Soil Mechanics and Foundation Engineering, 40 (6), 197 - 205 (2003).
4. I. Sevostianov, M. Kachanov. Int. J. Fract. 164, 147 - 154 (2010). Crossref
5. M. N. Bidgoli, Z. Zhao, L. Jing. Journal of Rock Mechanics and Geotechnical Engineering 5, 419 - 430 (2013). Crossref
6. R. F. Miftakhov, A. V. Myasnikov, A. V. Vershinin, S. S. Chugunov, K. M. Zingerman. Seismic Technologies. 4, 97 - 108 (2015) (in Russian). [Р. Ф. Мифтахов, А. В. Мясников, A. В. Вершинин, C. C. Чугунов, К. М. Зингерман. Технологии сейсморазведки, 4, 97 - 108 (2015)]. Crossref
7. R. V. Goldstein, N. M. Osipenko. Physical Mesomechanics. 18 (2), 139 - 148 (2015). Crossref
8. G. Bruno, M. Kachanov. J. Am. Ceram. Soc., 99 (12), 3829 - 3852 (2016). Crossref
9. E. A. Podolskaya, A. Yu. Panchenko, A. B. Freidin, A. M. Krivtsov. Acta Mechanica, 227 (1), 185 - 201 (2016).
10. E. M. Morozov, V. A. Levin, A. V. Vershinin. Strength analysis: Fidesys in hands of an engineer. Moscow, LENAND. (2015) 408 p. (in Russian) [Е. М. Морозов, В. А. Левин, А. В. Вершинин. Прочностной анализ. Фидесис в руках инженера. М.: ЛЕНАНД, 2015. - 408 с.].
11. V. A. Levin, I. I. Vdovichenko, M. Ya. Yakovlev, A. V. Vershinin, K. M. Zingerman. Modelling and Simulation in Engineering. 2016, Article ID 9010576, 10 pages (2016). Crossref
12. B. Ye. Pobedria. Mechanics of composite materials. Moscow: MSU. (1984) 336 p. (in Russian) [Б. Е. Победря. Механика композиционных материалов. М.: Изд-во МГУ, 1984. - 336 с.].
13. V. A. Levin, K. M. Zingerman, A. V. Vershinin, M. Ya. Yakovlev. Composite Structures. 131, 25 - 36 (2015). Crossref
14. A. V. Vershinin, V. A. Levin, K. M. Zingerman, A. M. Sboychakov, M. Ya. Yakovlev. Advances in Engineering Software. 86, 80 - 84 (2015). Crossref
15. C. A. Coulomb. Mem. Acad. Roy. Div. Sav., 7, 343 - 387 (1776).

Cited by (6)

1.
M. Yakovlev, I. Lukyanchikov, V. Levin, A. Vershinin, K. Zingerman. J. Phys.: Conf. Ser. 1158, 042037 (2019). Crossref
2.
M. Yakovlev, D. Konovalov. Continuum Mech. Thermodyn. (2022). Crossref
3.
Nina B. Artamonova, Sergey V. Sheshenin. Continuum Mech. Thermodyn. (2022). Crossref
4.
A. Smolin, E. Shilko, A. Grigoriev, E. Moskvichev, A. Fillipov, N. Shamarin, A. Dmitriev, A. Nikonov, E. Kolubaev. Continuum Mech. Thermodyn. (2022). Crossref
5.
B. D. Annin, A. G. Kolpakov, S. I. Rakin. Continuum Mech. Thermodyn. (2022). Crossref
6.
V. Golubev, A. Vasykov, I. Nikitin, A. Stankevich, I. Petrov. Continuum Mech. Thermodyn. (2022). Crossref