Investigation of shock-wave initiation in metal-teflon powder mixtures

I.V. Saikov, M.I. Alymov, S.G. Vadchenko, I.D. Kovalev show affiliations and emails
Received 23 August 2017; Accepted 01 November 2017;
Citation: I.V. Saikov, M.I. Alymov, S.G. Vadchenko, I.D. Kovalev. Investigation of shock-wave initiation in metal-teflon powder mixtures. Lett. Mater., 2017, 7(4) 465-468
BibTex   https://doi.org/10.22226/2410-3535-2017-4-465-468

Abstract

Shock-wave loading of reactive materials by throwing a flyerThe article is aimed at studying features and conditions of initiation, reaction, and final phase formation in the energetic condensed metal-teflon systems under shock wave loading. Thermodynamic calculations were carried out using the TERMO program. 16 different mixtures were made on the basis of the calculations. The adiabatic combustion temperatures, the composition and quantity of condensed products and the volume of gaseous products were calculated. To increase the combustion temperature, teflon powder was used as one of the components. The calculations showed that the compositions provided a sufficiently wide range of adiabatic combustion temperatures from 1190°C for Cu–Al–C2F4 composition to 3280°C for Hf-B-C2F4. The compositions based on Ni–Al, Cu–Al and Nb–Al with teflon differed in predominance of liquid phase in the products at relatively low combustion temperatures (1740ºС, 1190ºС and 1410ºС, respectively). Shock-wave loading of the samples was carried out in a multi-cell matrix by throwing a flyer. The acceleration of the flyer was carried out by detonation of the explosive. The detonation was initiated by an electric detonator located in the center along the assembly axis. Thus, the design of the recovery fixture provided the same loading conditions in all the cells. Ni–Al, Ni–Al–C2F4, Ti–B–C2F4, Hf–B–C2F4 systems reacted most completely. Thus, the systems based on metals (titanium and hafnium) with additives of boron and teflon are the most promising ones to be used as a reaction material from the viewpoint of the achieved synthesis temperature, initiation by shock-wave action and the reaction completeness.

References (14)

1. M. I. Alymov, S. G. Vadchenko, I. V. Saikov, I. D. Kovalev. Inorganic Materials: Applied Research. 8 (2), 340 (2017).
2. S. A. Zelepugin, A. YU. Dolgoborodov, O. V. Ivanova, A. S. Zelepugin. Shock-wave synthesis in solid mixtures. Textbook. Tomsk, IAO SB RAS. (2012) 230 p. (in Russian) [С. А. Зелепугин, А. Ю. Долгобородов, О. В. Иванова, А. С. Зелепугин Ударно-волновой синтез в твердых смесях. Томск, Изд-во ИОА СО РАН. 2012. 230 с.].
3. O. V. Ivanova, S. A. Zelepugin Izvestiya vuzov. 55 (9-3), 46 (2012) (in Russian) [Иванова О. В., Зелепугин С. А. Известия высших учебных заведений. Физика, 55 (9-3), 46 (2012)].
4. S. A. Zelepugin, O. V. Ivanova. In: Concise Encyclopedia of Self-Propagating High-Temperature Synthesis: History, Technology, and Products, ed. by I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, Yu. M. Maksimov, A. S. Mukasyan, A. S. Rogachev, Amsterdam, Netherlands; Oxford, United Kingdom; Cambridge, United States: Elsevier (2017) 466.
5. A. Yu. Dolgoborodov. Combustion, Explosion, and Shock Waves. 51 (1), 86 (2015).
6. A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev A. N., Streletskii V. E. Fortov. Journal of Experimental and Theoretical Physics Letters. 81 (7), 311 (2005).
7. N. A. Imhovik, V. V. Selivanov, A. K. Simonov, A. I. Sergeeva, V. B. Jashin. Armament and Economics. 1 (26), 53 (2014). (in Russian) [Н. А. Имховик, В. В. Селиванов, А. К. Симонов, А. И. Сергеева, В. Б. Яшин. Вооружение и экономика. 1 (26), 53 (2014).].
8. N. A. Imkhovik, A. V. Svidinsky, A. S. Smirnov, V. B. Yashin. Gorenie i Vzryv (Moskva) - Combustion and Explosion. 10 (1), 93 (2017). (inRussian) [Н.А. Имховик, А.В. Свидинский, А.С. Смирнов, В.Б. Яшин. Горение и взрыв. 10(1), 93 (2017)].
9. A. G. Merzshanov. Solid flame combustion. Textbook. Chernogolovka, ISMAN. (2000) 224 p. (in Russian) [А. Г. Мержанов. Твердопламенное горение. Черноголовка. ИСМАН. (2000) 224 с.].
10. A. A. Shiryaev. Thermodynamic of SHS: modern approach. Int. J. of SHS. 4 (4), 351 (1995).
11. M. I. Alymov, L. B. Pervukhin, A. S. Rogachev, O. L. Pervukhina, I. V. Saikov. Letters on materials. 4 (3), 153 - 158 (2014). (in Russian) [М. И. Алымов, Л. Б. Первухин, А. С. Рогачев, О. Л. Первухина, И. В. Сайков. Письма о материалах. 4 (3), 153 - 158 (2014).]. Crossref
12. N. N. Thadhani, N. Chawla, W. Kibbe. Journal of materials science. 26, 232 (1991).
13. Yu. A. Konon, L. B. Pervukhin, A. D. Chudnovskii. Explosive welding. Textbook. Moscow, Mashinostroenie. (1987) 216 p. (in Russian) [Ю. А. Конон, Л. Б. Первухин, А. Д. Чудновский. Сварка взрывом. Москва, Машиностроение. (1987) 216 с.
14. http://www.ism.ac.ru / thermo/.

Similar papers