New molybdates in the Rb2MoO4–MI2MoO4–Zr(MoO4)2 (MI – Na, K) systems as promising ion-conducting materials

S.G. Dorzhieva, B.G. Bazarov, J.G. Bazarova show affiliations and emails
Received: 14 September 2018; Revised: 22 October 2018; Accepted: 14 November 2018
This paper is written in Russian
Citation: S.G. Dorzhieva, B.G. Bazarov, J.G. Bazarova. New molybdates in the Rb2MoO4–MI2MoO4–Zr(MoO4)2 (MI – Na, K) systems as promising ion-conducting materials. Letters on Materials, 2019, 9(1) 17-21
BibTex   https://doi.org/10.22226/2410-3535-2019-1-17-21

Abstract

New molybdates Rb5MI1/3Zr5/3(MoO4)6  (MI – Na, K) are synthesized. Their crystallographic parameters are determined.Phase equilibria in the Rb2MoO4-Na2MoO4-Zr(MoO4)2 system were studied for the first time, quasi-binary cuts in the concentration triangle were determined, and triangulation was performed. The formation of a new phase of molybdate Rb5Na1 / 3Zr5 / 3(MoO4)6 was established in the system. New triple molybdates Rb5MI1 / 3Zr5 / 3(MoO4)6 (MI — Na,K) were synthesized by the solid-phase reaction in the temperature interval 400 – 510°C. The physicochemical characteristics of the prepared materials were carried out by Х-ray diffraction, differential scanning calorimetry, IR-spectroscopy, and scanning electron microscopy. It was established that synthesized molybdates crystallized in the trigonal space group R-3С, Z = 6. The crystal structure consists of MoO4-tetrahedra and octahedrally coordinated MO6-polyhedra. Rubidium cations are located in the cavities of the framework. Cation (sodium, potassium) and zirconium atoms are statistically distributed in M positions. The curves of differential-scanning calorimetry are characterized by endothermic effects corresponding to phase transitions and melting of the samples. The phase transitions found in the high-temperature region as a result of multiple measurements in the heating and cooling modes without melting the samples belong to the first-order phase transitions due to the temperature hysteresis. The IR spectra contain intense absorption bands associated with stretching vibrations of Mo-O bonds in MoO4-tetrahedra. In the final annealing product, the particle size is 80 – 400 nm, as measured at electron micrographs. The identified compounds of the composition Rb5MI1 / 3Zr5 / 3(MoO4)6 (MI — Na, K) have a framework structure with channels appropriate for ion transport, which is a prerequisite for ion-conducting properties and use of the compounds as promising solid electrolytes.

References

1. S. G. Dorzhieva, B. G. Bazarov, A. A. Bush et al. Solid State Commun. 217, 25 (2015). Crossref
2. J. G. Bazarova, A. V. Logvinova, B. G. Bazarov et al. J. Alloys Comp. 741, 834 (2018). Crossref
3. A. E. Sarapulova, B. Bazarov, T. Namsaraeva, S. Dorzhieva et al. J. Phys. Chem. C 118, 1763 (2014). Crossref
4. S. G. Dorzhieva, B. G. Bazarov, A. K. Subanakov et al. J. Solid State Chem. 199, 21 (2013). Crossref
5. S. F. Solodovnikov, Z. A. Solodovnikova, E. S. Zolotova, V. N. Yudina et al. J. Solid State Chem. 253, 121 (2017). Crossref
6. A. A. Savina, S. F. Solodovnikov, O. M. Basovich, Z. A. Solodovnikova et al. J. Solid State Chem. 205, 149 (2013). Crossref
7. W. Dridi, M. F. Zid, M. Maczka. J. Alloys Comp. 731, 955 (2018). Crossref
8. A. Sarapulova, D. Mikhailova, A. Senyshyn, H. Ehrenberg. J. Solid State Chem. 182 (12), 3262 (2009). Crossref
9. S. G. Dorzhieva, Yu. L. Tuschinova, B. G. Bazarov, A. I. Napomnyaschikh et al. Bull. RAS. Physics. 79 (2), 276 (2015). Crossref
10. D. Sofich, Yu. L. Tushinova, R. Shendrik et al. Optical Materials. 81, 71 (2018). Crossref
11. B. G. Bazarov, J. G. Bazarova, Yu. L. Tushinova et al. J. Alloys Comp. 701, 750 (2017). Crossref
12. S. F. Solodovnikov, E. G. Khaikina, Z. A. Solodovnikova, Yu. M. Kadyrova et al. Doklady Chemistry. 416 (1), 207 (2007). Crossref
13. J. G. Bazarova, Yu. L. Tushinova, B. G. Bazarov, S. G. Dorzhieva. Russian Chem. Bull. 66 (4), 587 (2017). Crossref
14. Sh. Pinglu, X. Zhiguo, M. S. Molokeev, V. V. Atuchin. Dalton Trans. 43, 9669 (2014). Crossref
15. V. V. Atuchin, A. S. Aleksandrovsky, O. D. Chimitova, T. A. Gavrilova et al. J. Phys. Chem. C. 118, 15404 (2014). Crossref
16. Ch. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, V. Atuchin. Phys. Chem. Chem. Phys. 17 (29), 19278 (2015). Crossref
17. M. Alvarez-Vega, U. Amador, M. E. Arroyo- de Dompablo. J. Electrochem. Society. 152 (7), A1306 (2005). Crossref
18. D. Mikhailova, A. Sarapulova, A. Voss, A. Thomas et al. Chem. Mater. 22 (10), 3165 (2010). Crossref
19. A. E. Sarapulova. Fazoobrazovaniye v troynykh solevykh sistemakh Me2MoO4-AMoO4-R(MoO4)2 (Me = Li, Na, K, Tl; A = Ca, Sr, Ba, Pb; R = Zr, Hf): dissertacija na soiskanie stepeni kandidata khimicheskih nauk. Irkutsk (2006) 125 p. (in Russian) [А. Е. Сарапулова Фазообразование в тройных солевых системах Me2MoO4-AMoO4- R(MoO4)2 (Me=Li, Na, K, Tl; A=Ca, Sr, Ba, Pb; R=Zr, Hf): дисc. канд. хим. наук. Иркутск (2006) 125 с.].
20. E. S. Zolotova, N. V. Podberezenskaya, P. V. Klevtsov. Izv. Acad. Sci. USSR. Inorgan. mater. 11 (1), 95 (1975). [Е. С. Золотова, Н. В. Подберезская, П. В. Клевцов. Изв. АН СССР. Неорган. матер. 11 (1), 95 (1975).].
21. M. V. Mokhosoev, J. G. Bazarova. Complex oxides of molybdenum and tungsten with I - IV groups elements. Moscow, Nauka (1990) 256 p. (in Russian) [М. В. Мохосоев, Ж. Г. Базарова. Сложные оксиды молибдена и вольфрама с элементами I - IV групп. Москва, Наука (1990) 256 с.].
22. Ch. Bai, Ch. Lei, Sh. Pan, Y. Wang et al. Solid State Sci. 33, 32 (2014). Crossref
23. S. F. Solodovnikov, L. V. Balsanova, B. G. Bazarov et al. Rus. J. Inorg. Chem. 48 (7), 1084 (2003). [С. Ф. Солодовников, Л. В. Балсанова, Б. Г. Базаров и др. Журн. неорган. химии. 48 (7), 1197 (2003).].
24. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Moscow, Mir (1991) 536 p. (in Russian) [К. Накомото. ИК-спектры и спектры KР неорганических и координационных соединений. Москва, Мир (1966) 536 с.].