Surface hardening of titanium alloy by minerals

A.V. Skazochkin, A.S. Useynov, S.V. Kislov
Received: 21 August 2017; Revised: 06 October 2017; Accepted: 08 October 2017
This paper is written in Russian
Citation: A.V. Skazochkin, A.S. Useynov, S.V. Kislov. Surface hardening of titanium alloy by minerals. Letters on Materials, 2018, 8(1) 81-87
BibTex   DOI: 10.22226/2410-3535-2018-1-81-87

Abstract

The comparative research of wear resistance, hardness and elastic modulus of exemplars from titanic BT6 alloy with the mineral coating created when using the low-temperature technological operations and without coating is conducted. Considering features of measurement of physico-mechanical properties of thin modified layers, measurement of wear resistance was executed by method of a multi-cycle sliding friction by the sapphire sphere with monitoring of force of a clip and deepening of a tip in an exemplar. Creation of a mineral layer increased hardness of a surface of an exemplar from titanic alloy by 45-70%. The wear resistance of the surface of an exemplar modified by minerals increased by 4-5 times in comparison with wear resistance of a surface of titanic BT6 alloy without modification.A comparative study of wear resistance, hardness and elastic modulus in samples of VT6 titanium alloy with a mineral coating created using low-temperature technological operations (local heating up to 80 °C) and without coating was performed. The hardness and elastic modulus in nanoindentation mode were measured by applying a series of indentations with various maximum loads. The load was selected in a way that penetration depth of the tip into the material ranged from 500 nm to 4 μm with an estimated thickness of the modified layer of about 10 μm. The creation of a mineral layer increased the hardness of the surface of the titanium alloy sample by 45-70% and also caused a 2-3 times increase of the roughness parameters of samples. Taking into account the specific features of measuring physical and mechanical properties of thin modified layers, wear resistance was measured using the method of multi-cycle friction with a sapphire sphere, while controlling the clamping force and deepness of the tip penetration into the sample. Wear resistance of the surface of the sample modified by minerals increased by 4-5 times as compared to the wear resistance of the surface of the VT6 titanium alloy without a modification. By authors’ opinion, the results of the studies reveal big potentials of using metal parts from titanium and titanium alloys with mineral coatings in various devices and mechanical assemblies.

References (15)

1.
A. A. Ilyin, B. A. Kolachev, I. S. Polkin. Titanic alloys. Structure, composition, properties. Reference book. M.: VILS-MATI. (2009) 520 p. (in Russian) [A. A. Ильин, Б. А. Колачев, И. С. Полькин Титановые сплавы. Состав, структура, свойства. Справочник. М.: ВИЛС-МАТИ. (2009). 520 с.]
2.
M Long., Rack H. J. Biomaterials. 18, 1621 – 1639 (1998).
3.
Patent RF № 2421548, 20.06.2011. (in Russian) [Патент РФ № 2421548, 20.06.2011 г.]
4.
S. V. Kislov, V. G. Kislov, A. V. Skazochkin, G. G. Bondarenko, A. N. Tikhonov. Russian Metallurgy (Metally). 7, 558 – 564 (2015) (in Russian) [С. В. Кислов, В. Г. Кислов, А. В. Сказочкин, Г. Г. Бондаренко, А. Н. Тихонов. Металлы. 4, 56 – 63 (2015).]. DOI: 10.1134/S0036029515070095
5.
S. V. Kislov, V. G. Kislov, A. V. Skazochkin, G. G. Bondarenko, A. N. Tikhonov. Oil and Gas. 4, 216 – 230 (2015). (in Russian) [С. В. Кислов, В. Г. Кислов, А. В. Сказочкин, Г. Г. Бондаренко, А. Н. Тихонов. Нефтегазовое дело. 4, 216 – 230 (2015).]
6.
P. V. Balash, S. V. Kislov, A. V. Skazochkin. Innovation. 12, 95 – 105 (2015). (in Russian) [П. В. Балаш, С. В. Кислов, А. В. Сказочкин. Инновации. 12, 95 – 105 (2015)]
7.
S. V. Kislov, V. G. Kislov, P. V. Balasch, A. V. Skazochkin, G. G. Bondarenko and A. N. Tikhonov. Materials Science and Engineering / IOP Conf. Series: Materials Science and Engineering 110 (2016). DOI: 10.1088/1757-899Х/110/1/012048
8.
S. V. Kislov, V. G. Kislov, P. V. Balasch, A. V. Skazochkin. Pump. Turbines. Systems. 4, 35 – 45 (2016). (in Russian) [С. В. Кислов, П. В. Балаш, В. Г. Кислов, А. В. Сказочкин. Насосы. Турбины. Системы. 4, 35 – 45 (2016).]
9.
S. V. Kislov, V. G. Kislov, P. V. Balasch, A. V. Skazochkin. Materials of the International Conference «The prospects of development of new technologies in power industry of Russia», Moscow. M.: VTI, (2016) p. 229 – 234. (in Russian) [С. В. Кислов, В. Г Кислов, П. В. Балаш, А. В. Сказочкин. Материалы Междунар. конф. «Перспективы развития новых технологий в энергетике России», Москва. М.: ОАО «ВТИ», 2016. с. 229 – 234]
10.
S. V. Kislov, V. G. Kislov, P. V. Balasch, A. V. Skazochkin. Chemical technique. 8, 20 – 30 (2016). (in Russian) [С. В. Кислов, П. В. Балаш, В. Г. Кислов, А. В. Сказочкин. Химическая техника. 8, 20 – 30 (2016)]
11.
A. Useinov, K. Gogolinskiy and V. Reshetov. International J. of Mater. Research. 7, 968 – 972 (2009).
12.
А. Useinov. Instruments and Experimental Techniques. 1, 134 – 138 (2004). (in Russian) [А. Усеинов. Приборы и техника эксперимента. 1, 134 – 138 (2004)]
13.
A. Useinov, K. Kravchuk, N. Lvova. Nanoindustry. 4, 46 – 50 (2011). (in Russian) [А. Усеинов, К. Кравчук, Н. Львова. Наноиндустрия. 4, 46 – 50 (2011).]
14.
A. Useinov, C. Useinov. Nanoindustry. 6, 28 – 32 (2010). (in Russian) [А. Усеинов, С. Усеинов. Наноиндустрия. 6, 28 – 32 (2010).]
15.
V. V. Grushev, S. Yu. Lazarev Industrial application of mineral coatings and ultrasonic processing. Chita: ZabGU. (2012) 144 p. (in Russian) [В. В. Грушев, С. Ю. Лазарев Промышленное применение минеральных покрытий и ультразвуковой обработки. Чита: ЗабГУ (2012) 144 с.]