The effect of aluminum nitride nanoparticles on the structure, phase composition and properties of materials of the Ti-B-Fe system obtained by SHS-extrusion

A.V. Bolotskaia, M.V. Mikheev, P.M. Bazhin, A.M. Stolin show affiliations and emails
Received: 05 July 2019; Revised: 28 October 2019; Accepted: 28 October 2019
This paper is written in Russian
Citation: A.V. Bolotskaia, M.V. Mikheev, P.M. Bazhin, A.M. Stolin. The effect of aluminum nitride nanoparticles on the structure, phase composition and properties of materials of the Ti-B-Fe system obtained by SHS-extrusion. Lett. Mater., 2020, 10(1) 43-47


It has been established that under shear deformation during SHS extrusion, the modification of Ti – B – Fe with small additions of nano-sized aluminum nitride powder leads to the refinement of the grain structure of the material. As a result of a decrease in the grain of the main phase, the microhardness of the material increases, on average, by 10%.The SHS-extrusion method, which combines the combustion processes in the mode of self-propagating high-temperature synthesis (SHS) and the subsequent high temperature shear deformation of the combustion products, was used to obtain metal-ceramic composite materials based on titanium boride with an iron matrix modified by additives of nanoaluminum nitride of grade SHS-Az. It was shown that small additions of nanoscale aluminum nitride powder (3 and 5 wt.%) to the initial mixture of the Ti-B-Fe system had a significant effect on the temperature and combustion rate of the system: the combustion rate decreased from 16 to 9 mm / s and the combustion temperature from 1830 –1900°C to 1730 –1780°C. The results of X-ray phase analysis showed that the modifying AlN nanopowder decomposed during the SHS process and interacted with titanium and iron matrix forming additional phases of TiN and AlFe3. This is the main cause of the reduction of the temperature and combustion rate during synthesis. A refinement of the grains of titanium diboride in the modified samples from 0.5 – 2.5 μm to 0.1–1.5 μm was observed using a scanning electron microscope. Microhardness measurements showed that the obtained compact metal-ceramic materials modified with the nanoscale AlN powder had 10 % higher microhardness values compared to samples without additives.

References (16)

1. T.W. Clyne. An introduction to composite materials. Cambridge university press (2019) 345 p. Crossref
2. C.T. Lynch, J.P. Kershaw. Metal Matrix Composites. Boca Raton, CRC Press (2018) 180 p. Crossref
3. T. A. Restivo, R. F. Beccari. Journal of the European Ceramic Society. 39 (3), 552 (2019). Crossref
4. S. V. Zhitnuyk. Proceedings of VIAM. 8 (68), 81 (2018). (in Russian) [С. В. Житнюк. Труды ВИАМ. 8 (68), 81 (2018). Crossref
5. A. P. Umanskiy. Aerospace Engineering and Technology. 9 (96), 214 (2012). (in Russian) [А. П. Уманский. Авиационно-космическая техника и технология. 9 (96), 214 (2012).].
6. K. A. Kolesnikova. Kompozitsionnyye iznosostoykiye pokrytiya sistemy Ti-B-Fe, poluchennyye metodom elektronno-luchevoy naplavki v vakuume: abstract of dissertation. Tomsk (2008) 18 p. (in Russian) [К. А. Колесникова. Композиционные износостойкие покрытия системы Ti-B-Fe, полученные методом электронно-лучевой наплавки в вакууме: автореферат диссертации. Томск (2008) 18 c.].
7. M. Selvakumar, T. Ramkumar, P. Chandrasekar. Journal of Thermal Analysis and Calorimetry. 136 (1), 419 (2019). Crossref
8. S. G. Grigorenko, G. M. Grigorenko, O. M. Zadorozhnyuk. Sovremennaya Elektrometallurgiya. 3, 51 (2017). (in Russian) [С. Г. Григоренко, Г. М. Григоренко, О. М. Задорожнюк. Современная электрометаллургия. 3, 51 (2017).]. Crossref
9. V. Moradi. Ceramics International. 44 (16), 19421 (2018). Crossref
10. A. G. Merzhanov. Kontseptsiya razvitiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza kak oblasti nauchno-tekhnicheskogo progressa. Chernogolovka, Territoria (2003) 263 p. (in Russian) [А. Г. Мержанов. Концепция развития самораспространяющегося высокотемпературного синтеза как области научно-технического прогресса.Черноголовка, Территория (2003) 263 c.].
11. A. S. Konstantinov. Composites Part A: Applied Science and Manufacturing. 108, 79 (2018). Crossref
12. P. M. Bazhin. Materials. 9 (12), 1027 (2016). Crossref
13. A. V. Bolotskaia. Perspective materials. 1, 73 (2019). (in Russian) [А. В. Болоцкая. Перспективные материалы. 1, 73 (2019).]. Crossref
14. Yu. V. Titova, D. A. Maydan. Sovremennyye materialy, tekhnika i tekhnologii. 6(14), 133 (2017). (in Russian) [Ю. В. Титова, Д. А. Майдан. Современные материалы, техника и технологии. 6(14), 133 (2017).].
15. A. P. Amosov. Russian Journal of Inorganic Chemistry. 31 (10), 1225 (2016). Crossref
16. A. P. Chizhikov. Doklady Chemistry. 484 (2), 79 (2019). Crossref

Similar papers