A double-gaussian waveguide for ultrasonic treatment of metals

A.A. Mukhametgalina, A.A. Nazarov show affiliations and emails
Received 10 July 2019; Accepted 17 September 2019;
Citation: A.A. Mukhametgalina, A.A. Nazarov. A double-gaussian waveguide for ultrasonic treatment of metals. Lett. Mater., 2019, 9(4) 414-418
BibTex   https://doi.org/10.22226/2410-3535-2019-4-414-418

Abstract

Presented in the figure are the stress distributions in the double-Gaussian waveguide and in a half-wave cylinder. It is shown that the double-Gaussian waveguide allows increasing the area of uniform distribution of the amplitude of normal stresses in a significant region.Ultrasonic treatment (UST) of metals is based on the exciting of resonant high-frequency vibrations to induce oscillating elastic stresses in the bulk of materials, which result in the generation, motion and rearrangement of crystal lattice defects. Normally, the resonant vibrations are obtained by using cylindrical samples or ultrasonic instruments having the length equal to the half-wavelength of ultrasound. In such waveguides, however, the distribution of the stress amplitude is not uniform along their axis. Accordingly, changes in the structure and properties due to the UST are different along the sample. Here, a new type of ultrasonic waveguide based on the Gaussian (ampulla) horn is proposed and called a double-Gaussian waveguide. It is composed of two identical high-amplitude parts of a Gaussian waveguide joined at a node that allows one to achieve a uniform distribution of the amplitude of normal stresses in a significant region with a length equal to that of a doubled Gaussian region. Analytic results obtained by Eisner are used to calculate geometrical characteristics of the waveguide and the latter are refined by finite element modeling. Characteristics of double-Gaussian waveguides made of steel 45 and titanium alloy VT6 (Russian grades) are calculated. This type of waveguide can be used in the bulk ultrasonic treatment of materials to expose the samples to oscillating stresses of an equal amplitude.

References (18)

1. N. A. Tyapunina, E. K. Naimi, G. M. Zinenkova. Ultrasound Action on Crystals with Defects. Moscow, Moscow State University, (1978) 239 pp. (in Russian) [Н.А. Тяпунина, Е.К. Наими, Г.М. Зиненкова. Действие ультразвука на кристаллы с дефектами. Москва, Изд-во МГУ (1999) 239 с.].
2. A. V. Kulemin. Ultrasound and Diffusion in metals. Moscow, Metallurgia (1978) 200 pp. (in Russian) [А.В. Кулемин. Ультразвук и диффузия в металлах. Москва, Металлургия (1978) 200 с.].
3. O. V. Abramov. High-Intensity Ultrasonics: Theory and Industrial Applications. CRC Press (1999) 700 pp.
4. A. A. Nazarov, A. A. Samigullina, R. R. Mulyukov, Yu. V. Tsarenko, V. V. Rubanik. J. Machin. Manuf. Reliab. 43, 153 (2014). Crossref
5. I. A. Gindin, O. I. Volchok, I. M. Neklyudov. Fizika Tverdogo Tela. 17, 655 (1975). (in Russian) [И.А.Гиндин, О.И.Волчок, И.М.Неклюдов. ФТТ. 17, 655 (1975).].
6. V. F. Belostotskii, O. N. Kashevskaya, I. G. Polotskii. Metallofizika. 42, 97 (1972). (in Russian) [В.Ф. Белостоцкий, О.Н. Кашевская, И.Г. Полоцкий. Металлофизика. 42, 97 (1972).].
7. S. V. Kovsh, V. A. Kotko, I. G. Polotskii, G. I. Prokopenko, V. I. Trefilov, S. A. Firstov. Fizika Metallov i Metallovedenie. 35 (6), 1199 (1973). (in Russian) [С. В. Ковш, В. А. Котко, И. Г. Полоцкий, Г. И. Прокопенко, В. И. Трефилов, С. А. Фирстов. ФММ. 35 (6), 1199 (1973).].
8. A. A. Nazarov, R. R. Mulyukov. Nanostructured Materials. In: Nanoscience, Engineering and Technology Handbook (ed. by S. Lyshevski, D. Brenner, J. Iafrate W. Goddard). CRC Press, USA (2013) P. 22-1-22-41.
9. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk Nanostructured Materials: Fundamentals and Applications. Hoboken, Wiley (2013). Crossref
10. A. A. Nazarov. Lett. Mater. 8 (3), 372 (2018). Crossref
11. A. A. Nazarova, R. R. Mulyukov, Yu. V. Tsarenko, V. V. Rubanik, A. A. Nazarov. Mater. Sci. Forum. 667 - 669, 605 (2011). Crossref
12. A. A. Samigullina, R. R. Mulyukov, A. A. Nazarov, A. A. Mukhametgalina, Y. V. Tsarenko, V. V. Rubanik. Lett. Mater. 4, 52 (2014). (in Russian) [А. А. Самигуллина, Р. Р. Мулюков, А. А. Назаров, А. А. Мухаметгалина, Ю. В. Царенко, В. В. Рубаник. Письма о материалах. 4, 52 (2014).]. Crossref
13. A. A. Samigullina, A. A. Nazarov, R. R. Mulyukov, Yu. V. Tsarenko, V. V. Rubanik. Rev. Adv. Mater. Sci. 39, 48 (2014).
14. A. A. Mukhametgalina, A. A. Samigullina, S. N. Sergeyev, A. P. Zhilyaev, A. A. Nazarov, Yu. R. Zagidullina, N. Yu. Parkhimovich, V. V. Rubanik, Yu. V. Tsarenko. Lett. Mater. 7, 85 (2017). (in Russian) [А. А. Мухаметгалина, А. А. Самигуллина, С. Н. Сергеев, А. П. Жиляев, А. А. Назаров, Ю. Р. Загидуллина, Н. Ю. Пархимович, В. В. Рубаник, Ю. В. Царенко. Письма о материалах. 7, 85 (2017).]. Crossref
15. A. P. Zhilyaev, A. A. Samigullina, A. E. Medvedeva, S. N. Sergeev, J. M. Cabrera, A. A. Nazarov. Mater. Sci. Eng. 698, 136 (2017). Crossref
16. A. A. Samigullina, A. A. Mukhametgalina, S. N. Sergeyev, A. P. Zhilyaev, A. A. Nazarov, Yu. R. Zagidullina, N. Yu. Parkhimovich, V. V. Rubanik, Yu. V. Tsarenko. Ultrasonics. 82, 313 (2018). Crossref
17. E. Eisner. The design of resonant vibrators. In: Physical Acoustics. Vol. 1. Part. B (ed. by W. P. By Mason). New. York, Academic Press (1964) P. 353 - 365.
18. A. A. Samigullina, M. A. Murzinova, A. A. Mukhametgalina, A. P. Zhilyaev, A. A. Nazarov. Def. Diff. Forum. 385, 53 (2018). Crossref

Similar papers

Funding

1. Russian Science Foundation - No. 16-19-10126