Kinematic Features of Viscous Flow of Amorphous Materials During an Equal Channel Multiple-Angle Extrusion Through a 2-Turn Rectangular Die

A.V. Perig, N.N. Golodenko, I.G. Zhbankov, I.I. Boiko, A.A. Sitnik show affiliations and emails
Received 26 November 2011; Accepted 16 December 2011;
This paper is written in Russian
Citation: A.V. Perig, N.N. Golodenko, I.G. Zhbankov, I.I. Boiko, A.A. Sitnik. Kinematic Features of Viscous Flow of Amorphous Materials During an Equal Channel Multiple-Angle Extrusion Through a 2-Turn Rectangular Die. Lett. Mater., 2011, 1(4) 217-221
BibTex   https://doi.org/10.22226/2410-3535-2011-4-217-221

Abstract

Key energy-power parameters of an Equal Channel Multiple-Angle Extrusion process, theoretical material flow patterns through a 2-turn rectangular die and dynamics of macroscopic rotation formation in amorphous materials have been determined with a numerical finite-difference solution of the curl transfer equation for planar flow of viscous incompressible continua. Good agreement between theoretical and averaged experimental results was found within the scope of physical simulation.

References (13)

1. V.A. Beloshenko, Ya.E. Beygelzimer and V.N. Varyukhin.Polymer solid state extrusion. Kiev, Naukova dumka(2008) 207 p. (in Russian) [В.А. Белошенко, Я.Е.Бейгельзимер, В.Н. Варюхин. Твердофазная экструзия полимеров. Киев, Наукова думка (2008) 207 с.].
2. V.A. Beloshenko, V.N. Varyukhin, A.V. Voznyak, Yu.V.Voznyak. Polym. Eng. Sci. 50, 5 (2010).
3. V.Z. Spuskanyuk, A.V. Spuskanyuk, V.N. Varyukhin.J. Mater. Process. Technol. 203, 1-3 (2008).
4. A. Rosochowski, L. Olejnik. J. Mater. Process. Technol.125-126, 309 (2002).
5. H.S. Kim. Mater. Sci. Eng. A328, 1-2 (2002).
6. J.-F. Gerbeau, C. Le Bris, T. Lelièvre. MathematicalMethods for the Magnetohydrodynamics of LiquidMetals. OUP (2006) 324 p.
7. P.J. Roache. Fundamentals of Computational FluidDynamics. Hermosa Publishers (1998) 648 p.
8. V.Iu. Bezuglyi, N.M. Beliaev. Numerical methods inthe theory of convective heat and mass transfer. Kiev-Donetsk, Vishcha Shkola (1984) 176 p. (in Russian)[В.Ю. Безуглый, Н.М. Беляев. Численные методы тео-рии конвективного тепломассообмена. Киев-Донецк, Вища школа (1984) 176 с.].
9. P.A. Davidson. Turbulence. An introduction for scientistsand engineers. OUP (2004) 680 p.
10. A.V. Perig, A.M. Laptev, N.N. Golodenko, A.Yu.Loshmanov, M.G. Litvinov. Materials working bypressure. Collection of science papers. Founder DonbassState Engineering Academy-Kramatorsk. 1 (20) (2009)(in Russian) [А.В. Периг, А.М. Лаптев, Н.Н. Голоденко, А.Ю. Лошманов, М.Г. Литвинов. Обработка мате-риалов давлением: тем. сб. науч. тр. - Краматорск:ДГМА. 1 (20) (2009)].
11. A.V. Perig, A.M. Laptev, N.N. Golodenko, Yu.A. Erfort, E.A. Bondarenko. Mater. Sci. Eng., A. 527, 16-17 (2010).
12. H. Sofuoglu, J. Rasty. Tribol. Int. 33, 8 (2000).
13. K. Chijiiwa, Y. Hatamura, N. Hasegawa. T. Iron Steel I.Jpn. 21, 8 (1981).

Cited by (1)

1.
Alexander V. Perig, Nikolai N. Golodenko. Advances in Materials and Processing Technologies. 5(4), 617 (2019). Crossref

Similar papers