Modeling the healing of damage of metal by high-energy pulsed electromagnetic field

K.V. Kukudzhanov show affiliations and emails
Received 10 August 2017; Accepted 06 October 2017;
This paper is written in Russian
Citation: K.V. Kukudzhanov. Modeling the healing of damage of metal by high-energy pulsed electromagnetic field. Lett. Mater., 2018, 8(1) 27-32
BibTex   https://doi.org/10.22226/2410-3535-2018-1-27-32

Abstract

By numerical modeling the simple approximate dependence of zinc’s damage f(t) from time t  and the initial damage f0 under treatment of pulse high-energy electromagnetic field are obtained (С= 1,228*102 s–1, t0= 9,63 μs, are the proportionality coefficient and the threshold time respectively).The processes transformation of defects such as the intergranular micro-cracks are investigated. These processes occur in the material under the processing of metal samples with high-energy pulsed electromagnetic field inducing in the material a short pulse of high density electrical current. Investigation on basis of numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elasticplastic material with defects are carried out. The model accounts for melting and evaporation of metal and dependence of its physical and mechanical properties on temperature. Equations is solved numerically by finite elements method with adaptive mesh using on base of alternative Euler-Lagrange’s method. Calculations has shown, that welding of crack and healing of micro-defects under treatment of short pulse of current are took place. Healing occurs by simultaneous reduction in length, the ejection of the molten metal into crack and closing of micro-crack shores. For macroscopic description of the healing process the material healed and damage parameters are entered. Shapes of microcracks practically does not affect on dependences of healed and damage from time under treatment of current pulse. These changes are affected by value of initial damage and initial length microcrack only. The dependences of healed and the damage from the time will be practically same for all different shapes of microdefects, provided that initial lengths microcracks and initial damages are equal for these different shapes of defects. Simple approximate piecewise-linear dependences of damage and healed from time and the initial damage are obtained.

References (19)

1. Beklemishev N. N., Koryagin N. I., Shapiro G. C. Izv. Akad. Nauk SSSR. Metals, 4, 184 (1984). (in Russian) [Беклемишев Н. Н., Корягин Н. И., Шапиро Г. С. Известия АН СССР, Мелаллы. 4, 184 (1984)].
2. Beklemishev N. N., Kukudzhanov V. N., Porokhov V. A. et al. Preprint No. 372, Moscow, IPM AN SSSR. (1989) 56 p. (in Russian) [Беклемишев Н. Н., Кукуджанов В. Н., Порохов В. А. и др. Пластичность и прочность металлических материалов с учетом импульсного воздействия высокоэнергетического электромагнитного поля. Препринт № 372., М. ИПМ АН СССР. 1989. 56 с.].
3. Klyushnikov V. D., Ovchinnikov I. V. Mech. Solids. 23 (4), 113 (1988).
4. Ovchinnikov I. V. J. Problems of Strength. 6, 54 (1993).
5. Kukudzhanov V. N., Kolomiets-Romanenko A. V. Mech. Solids. 45 (3), 465 (2010).
6. Song Hui, Wang Zhong-Jin, Gao Tie-Jun. Trans. Nonferrous Soc. China. 17, 87 (2007).
7. Troitskii O. A., Baranov Yu. V., Avraamov Y. S., Shlyapin A. D. Physical fundamentals and technologies of processing advanced materials (theory, technology, structure, and properties). Vol. 1., Moscow-Izhevsk, Inst. Comp.Science, (2004) 590 p. (in Russian) [Троицкий О. А. Баранов Ю. В., Аврамов Ю. С., Шляпин А. Д. Физические основы и технологии обработки современных материалов (теория, технология, структура и свойства). Т. 1. Москва-Ижевск. Инст.комп.иссл. 2004. 590 с.].
8. Conrad H. Final Report ARO Proposal Nо 23090-MS, ARO Funding Document DAAL03-86-K-0015, U. S. Army Research Office, Raleigh, NC State University. (1989) 52 p.
9. Zuev L. B., Tsellermaer V. Ya., Gromov V. E., and Murav’ev V. V. Ultrasonic monitoring of the accumulation of aging damage and recovery of the useful lifetime of industrial parts. Tech. Phys. 49 (2), 1094 (1997).
10. Zuev L. B., Sosnin O. V., Chirakadze D. Z., Gromov V. E., and Murav’ev V. V. J. Appl. Mech. Tech.Phys. 39 (4), 639 (1998).
11. Liu T. J. C. Int. J. Mech., Aerosp., Indust., Mechatr. Manuf. Engineering, 4 (5), 387 (2010).
12. Yu J., Zhang H., Deng D., Hao S., Iqbal A. Chinese J. Mech. Engineering, 27 (4), 745, (2014).
13. Kukudzhanov K. V. PNRPU Mechanics Bulletin. 4, 138 - 158 (2015) (in Russian) [Кукуджанов К. В. Вестник ПНИПУ. Механика. 4, 138 (2015).]. Crossref
14. Kukudzhanov K. V., Levitin A. L. PNRPU Mechanics Bulletin. 2, 89 (2016) (in Russian) [Кукуджанов К. В., Левитин А. Л. Вестник ПНИПУ. Механика. 2, 89 (2016)].
15. Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The Finite Element Method: Its Basis and Fundamentals. (6ed.), Elsevier. (2005) 613 p.
16. Finkel’ V. M., Golovin Yu. I., Sletkov A. A. Sov. Phys. Dokl. 237 (2), 325 - 327 (1977).
17. Gavrilin I. V. Melting and crystallization of metals and alloys. Vladimir, VGU. (2000) 260 p. (in Russian) [Гаврилин И. В. Плавление и кристаллизация металлов и сплавов. Владимир, ВГУ. 2000. 260 с.].
18. Pikunov M. V. Metallurgy of the melts. A course of lectures. Moscow, MISA. (2005) 286 p. (in Russian) [Пикунов М. В. Металлургия расплавов. Курс лекций. М. МИСиС. 2005. 286 с.].
19. Kachanov L. M. Izv. Akad. Nauk SSSR. OTN. 8, 26 (1958) (in Russian) [Качанов Л. М. Известия АН СССР, ОТН. 8, 26 (1958)].