Deformation relief in crystals as a way of stress relaxation

E. Alfyorova1, D. Lychagin1,2
1Tomsk Polytechnic University, 634050, Tomsk, Russia
2Tomsk State University, 634050, Tomsk, Russia

Abstract

The formation of the deformation relief is considered as a way of relaxation of applied stress. The process of self-organization of slip bands in the structural elements of the deformation relief of a qualitatively new level (pack slip bands, meso-, macrobands) aims to reduce local stresses in the zone of their formation. It is established the formation of a quasiperiodic deformation relief occurs under the conditions Azar-Tiller-Greenfield instability, critical wavelengths of the surface perturbations are calculated. Each type of structural elements of the deformation relief causes a certain local curvature of the surface and increases the magnitude of the local stress at the area of its formation. Pack slip bands maximizes the stress on the surface (8.2 times). Macrobands increase the local stress by 6.3 times, the minimum value is typical for mesobands (3.3 times). The radius of curvature in the convex zone for macrobands is the largest (r=0.40±0.04μm), which contributes to stress relaxation, and for mesobands the smallest (r=0.050±0.003μm). The process of self-organization of the deformation relief increase in the size of the region with mutually consistent deformation. This contributes to a longer preservation of the integrity of the crystal during deformation. The example of nickel, aluminum, ordered and disordered Ni3Fe alloy showed the self-organization of slip bands in packs reduces the local stress in the packs formation zone by 1.8 to 3.5 times in comparison with slip bands. The revealed regularities are characteristic for materials with different stacking fault energy, the type of sliding dislocation, and crystallographic features.

Received: 22 March 2017   Revised: 26 April 2017   Accepted: 26 April 2017

Views: 73   Downloads: 25

References

1.
S. Khoddam, H. Beladi, P. D. Hodgson, A. Zarei-Hanzaki, Surface wrinkling of the twinning induced plasticity steel during the tensile and torsion tests // Mater. Des. Elsevier Ltd, 2014. Vol. 60. P. 146 – 152.
2.
D. V. Lychagin, E. A. Alfyorova Folding in FCC metal single crystals under compression // Phys. Solid State. 2015. Vol. 57, № 10. P. 2034 – 2038.
3.
D. V. Lychagin, S. Yu. Tarasov, A. V. Chumaevskii, E. A. Alfyorova Strain-induced folding on [111] copper single crystals under uniaxial compression // Appl. Surf. Sci. Elsevier B. V., 2016. Vol. 371. P. 547 – 561.
4.
M. Cai, S. C. Langford, J. Thomas Dickinson Orientation dependence of slip band formation in single-crystal aluminum studied by photoelectron emission // Acta Mater. Acta Materialia Inc., 2008. Vol. 56, № 20. P. 5938 – 5945.
5.
G. Girardin, C. Huvier, D. Delafosse, X. Feaugas Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel-chromium // Acta Mater. Acta Materialia Inc., 2015. Vol. 91. P. 141 – 151.
6.
S. Ha, К. Kim Heterogeneous deformation of Al single crystal: Experiments and finite element analysis // Math. Mech. Solids. 2011. Vol. 16, № 6. P. 652 – 661.
7.
D. E. Kramer, M. F. Savage, L. E. Levine AFM observations of slip band development in Al single crystals // Acta Mater. 2005. Vol. 53, № 17. P. 4655 – 4664.
8.
Tatsuya Okada, Mitsuyoshi Utani, Atsushi Osue, Nobukazu Fujii Minoru Tagami and Fukuji Inoko Slip Morphology and Recrystallization in Copper Single Crystals Tensile-Deformed along (011) and (001) Direction // Mater. Trans. 2005. Vol. 46, № 3. P. 602 – 607.
9.
L. A. Teplyakova, I. V. Bespalova, D. V. Lychagin Spatial organization of deformation in aluminum [112] single crystals in compression // Phys. Mesomech. 2009. Vol. 12. P. 166 – 174.
10.
H. S. Ho, M. Risbet, X. Feaugas, G. Moulin The effect of grain size on the localization of plastic deformation in shear bands // Scr. Mater. 2011. Vol. 65, № 11. P. 998 – 1001.
11.
J. Man, P. Klapetek, O. Man, A. Weidner, K. Obrtlík, J. Polák Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature // Philos. Mag. 2009. Vol. 89, № 16. P. 1337 – 1372.
12.
J. Man, M. Valtr, M. Petrenec, J. Dluhoš, I. Kubena, K. Obrtlík, J. Polák AFM and SEM-FEG study on fundamental mechanisms leading to fatigue crack initiation // Int. J. Fatigue. 2015. Vol. 76. P. 11 – 18.
13.
L. A. Teplyakova, E. V. Kozlov Formation of scale structural levels of plastic deformation localization in metal single crystals. I. Macrolevel // Phys. Mesomech. 2006. Vol. 9, № 1 – 2. P. 53 – 62.
14.
X. G. Wang, J. F. Witz, A. E. Bartali, A. Oudriss, R. Seghir, P. Dufrénoy, X. Feaugas, E. Charkaluk A dedicated DIC methodology for characterizing plastic deformation in single crystals // Exp. Mech. 2016. Vol. 56, № 7. P. 1155 – 1167.
15.
K. R. Magida, J. N. Florandob, D. H. Lassilab, M. M. LeBlancb, N. Tamurac and J. W. Morris Jr. Mapping mesoscale heterogeneity in the plastic deformation of a copper single crystal // Philos. Mag. 2009. Vol. 89, № 1. 77 – 107 p.
16.
Lychagin D. V., Alfyorova E. A., Starenchenko V. A. Effect of crystallogeometric states on the development of macrobands and deformation inhomogeneity in [111] nickel single crystals // Phys. Mesomech. 2011. Vol. 14, № 1 – 2. P. 66 – 78.
17.
D. V. Lychagin, S. Yu. Tarasov, A. V. Chumaevskii, E. A. Alfyorova Macrosegmentation and strain hardening stages in copper single crystals under compression // Int. J. Plast. Elsevier Ltd, 2015. Vol. 69. P. 36 – 53.
18.
D. Lychagin, A. Chumaevskiy, E. Alferova Laws of development of deformation folds in [111] copper single crystal at axis compression // Appl. Mech. Mater. 2014. Vol. 682. P. 448 – 452.
19.
D. J. Srolovitz On the stability of surfaces of stressed solids // Arta Met. 1989. Vol. 37, № 2. P. 621 – 625.
20.
M. A. Grinfeld (1986). 1 // Sov. Phys. Dokl. 31,. 1986. Vol. 31. P. 831 – 834.
21.
R. Asaro, W. Tiller Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion // Metall. Trans. 1972. Vol. 3, № 7. P. 1789 – 1796.
22.
P. V. Kuznetsov, Yu. I. Tyurinb, I. P. Chernov, T. I. Sigfussonc Grinfeld instability as a mechanism of the formation of self-similar structures on aluminum single-crystal foils under cyclic tension // Phys. Solid State. 2012. Vol. 54, № 12. P. 2429 – 2436.
23.
P. V. Kuznetsov, V. E. Panin, I. V. Petrakova Grinfeld instability in the formation of a tweed structure at the Al crystal surface under cyclic tension // Phys. Mesomech. 2010. Vol. 13, № 1 – 2. P. 70 – 78.
24.
W. H. Yang, D. J. Srolovitz Surface morphology evolution in stressed solids: surface diffusion controlled crack initiation // J. Mech. Phys. Solids. 1994. Vol. 42, № 10. P. 1551.
25.
R. Spatschek, E. A. Brener Fracture and the Grinfeld instability // J. Cryst. Growth. 2005. Vol. 275, № 1 – 2. P. 307 – 311.
26.
D. H. Yeon, P. R. Cha, M. Grant Phase field model of stress-induced surface instabilities: Surface diffusion // Acta Mater. 2006. Vol. 54, № 6. P. 1623 – 1630.
27.
W. W. Mullins Theory of thermal grooving // J. Appl. Phys. 1957. Vol. 28, № 3. P. 333 – 339.
28.
L. A. Teplyakova, D. V. Lychagin, E. V. Kozlov Shear localization in deformed Al single crystals with a compression axis orientation [001] // Phys. Mesomech. 2003. Vol. 6, № 1 – 2. P. 19 – 24.
29.
D. V. Lychagin, E. A. Alfyorova, A. S. Tailashev Misorientation Development During the Formation of Macrobands in the [001] Nickel Single Crystals // Russ. Phys. J. 2015. Vol. 58, № 5. P. 717–723.