Thermoelectric and thermal properties of the superionic AgxCu2-xSe (x=0.01, 0.02, 0.03, 0.04, 0.25) compounds

M.K. Balapanov, R.K. Ishembetov, K.A. Kuterbekov, M.M. Kubenova, V.N. Danilenko, K.S. Nazarov, R.A. Yakshibaev show affiliations and emails
Received 19 October 2016; Accepted 30 November 2016;
This paper is written in Russian
Citation: M.K. Balapanov, R.K. Ishembetov, K.A. Kuterbekov, M.M. Kubenova, V.N. Danilenko, K.S. Nazarov, R.A. Yakshibaev. Thermoelectric and thermal properties of the superionic AgxCu2-xSe (x=0.01, 0.02, 0.03, 0.04, 0.25) compounds. Lett. Mater., 2016, 6(4) 360-365
BibTex   https://doi.org/10.22226/2410-3535-2016-4-360-365

Abstract

The results of investigations of the thermoelectric and thermal properties of AgxCu2-xSe (x = 0.01, 0.02, 0.03, 0.04, 0.25) alloys are presented in the paper. The AgxCu2-xSe samples with low silver content were prepared by solid state reaction of the pure elements in argon atmosphere at 773 K temperature. The Ag0.25Cu1.75Se sample was sintered by solid phase reaction of Cu2Se and Ag2Se mixture in argon atmosphere at 673 K. At room temperature X-ray diffraction study revealed the presence of three phases in the samples: the Cu2Se orthorhombic phase, the Cu1.8Se cubic phase and the AgCuSe orthorhombic phase. The heat of the superionic phase transition in Ag0.01Cu1.99Se was measured equal to (3.5 ± 0.3) kJ / mol. For Ag0.25Cu1.75Se sample the heat of the superionic phase transition was found to be (3.1 ± 0.3) kJ / mol. In addition to intense peak of the superionic phase transition occupying the 373-423 K temperature range, the weak thermal effects for Ag0.01Cu1.99Se at 317 K, and ones for Ag0.25Cu1.75Se at 316 K and 437 K were observed too. In the investigated temperature range of 290 - 770 K the electronic conductivity σ decreases, and Zeebeck coefficient α increases with silver content in the compounds. The thermal conductivity of Ag0.03Cu1.97Se compound decreases monotonically from 0.54 to 0.34 W m-1 K-1 in the range 420 - 650 K after the superionic phase transition, resulting in thermoelectric efficiency ZT = σα2T/λ increases monotonically, reaching a value ZT = 1 at 650 K.

References (31)

1. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder. Nat. Mater. 11, 422 - 425 (2012). Crossref
2. S. Ballikaya, H. Chi, J. R. Salvador and C. Uher. J. Mater. Chem. A. 1, 12478 - 12484 (2013). Crossref
3. T. W. Day, K. A. Borup, T. Zhang, F. Drymiotis, D. R. Brown, X. Shi, L. Chen, B. B. Iversen, G. J. Snyder. Materials for Renewable and Sustainable Energy. 3, 26 - (2014). Crossref
4. Yushina L. D. Solid state chemotronics. Ekaterinburg: Ural Department of Russian Academy of Sciences (2003) 204 p. (In Russian) Юшина Л. Д. Твердотельная хемотроника. Екатеринбург: УРО РАН. 2003. 204 с.
5. M. Kh. Balapanov, I. B. Zinnurov, G. R. Akmanova. Physics of the Solid State. 48, 1868 - 1871 (2006). Crossref
6. A. Casu, A. Genovese, L. Manna, P. Longo, J. Buha, G. A. Botton, S. Lazar, ¶M. U. Kahaly, U. Schwingenschloegl, M. Prato, H. Li, S. Ghosh, F. Palazon, F. De Donato, S. L. Mozo, E. Zuddas, and A. Falqui. ACS Nano, 10, 2406 - 2414 (2016). Crossref
7. M. C. Nguyen, , J. H. Choi, , X. Zhao, C. Z. Wang, Z. Zhang, K. M. Ho. Physical Review Letters, 111, 165502 (2013). Crossref
8. Y. Tashiro, K. Taniguchi, H. Miyasaka. Electrochimica Acta. 210, 655 - 661 (2016). Crossref
9. W. Zhang, J. Xu, Z. Yang, S. Ding, C. Zeng, L. Chen, Q. Wang. Adv. Funct. Mater. 19, 1759 - 1766 (2009). Crossref
10. A. Wolf, T. Kodanek and D. Dorfs. Nanoscale, 7, 19519 - 19527 (2015). Crossref
11. P. Kumar, K. Singh. Struct. Chem., 22, 103 - 110 (2011). Crossref
12. C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, B. A. Korgel. / Nano Lett. 11, 2560 - 2566 (2011). Crossref
13. X. Liu, W.-C. Law, M. Jeon, X. Wang, M. Liu, C. Kim, P. N. Prasad, M. T. Swihart. Adv. Health. Mat. 2, 952 - 957 (2013). Crossref
14. M. A. Korzhuev, V. F. Bankina, B. F. Gruzinov, G. S. Bushmarina. Semiconductors. 23, 959 (1989). (In Russian) М. А. Коржуев, В. Ф. Банкина, Б. Ф. Грузинов, Г. С. Бушмарина. Физика и техника полупроводников. 23, 1545 - 1551 (1989).
15. A. A. Voskanyan, P. N. Inglizyan, S. P. Lalikin, I. A. Plutto, Y. M. Shevchenko. Soviet physics. Semiconductors. (1978). (In Russian) А. А. Восканян, П. Н. Инглизян, С. П. Лалыкин, И. А. Плютто, Я. М. Шевченко. Физика и техника полупроводников. 12, 2096 - 2099 (1978).
16. R. A. Yakshibaev, V. N. Konev, M. K. Balapanov, Sov. Phys. Solid State 26, 2189 - 2191. (1984) (In Russian) Р. А. Якшибаев, В. Н. Конев, М. Х. Балапанов. Физика твердого тела. 26, 3641 - 3645 (1984).
17. N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, E. V. Skudnova, and S. N. Chizhevskaya. Poluprovodnikovye Khal’kogenidy i Splavy na Ikh Osnove (Semiconducting Chalcogenides and Alloys on Their Basis). Moscow: Nauka, 1975. (In Russian) Н. Х. Абрикосов, В. Ф. Банкина, Л. В. Порецкая, Е. В. Скуднова, С. Н. Чижевская. Полупроводниковые халькогениды и сплавы на их основе. М.: Наука, (1975). 220 с.
18. O. Milat, Z. Vucic, B. Ruscic. Solid State Ionics 23, 37 (1987). Crossref
19. S. A. Danilkin, M. Avdeev, M. Sale, T. Sakuma. Solid State Ionics. 225, 190 - 193 (2012). Crossref
20. T. Ohtani, Y. Tachibana, J. Ogura, T. Miyaka, Y. Okada, Y. Yokota. J. Alloys and Comp. 279, 136 - 141 (1998). Crossref
21. R. A Yakshibaev., V. N. Konev, N. N. Mukhamadeeva, M. Kh. Balapanov. Izv. Akad. Nauk SSSR, Neorg. Mater. 24, 501 - 503 (1988). (In Russian) R. А. Якшибаев, В. Н. Конев, Н. Н. Мухамадеева, М. Х. Балапанов. Изв. АН СССР. Неорг. мат. 24, 501 - 503 (1988).
22. S. Miyatani. J. Phys. Soc. Japan, 34, 422 - 432 (1973). Crossref
23. V. M. Berezin, and G. P. Vyatkin. Superionnye poluprovodnikovye khal’kogenidy (Superionic Chalcogenide Semiconductors), Chelyabinsk: Yuzhno-Ural. Gos. Univ., 2001. 135 p. (In Russian) В. М. Березин, Г. П. Вяткин. Суперионные полупроводниковые халькогениды. Челябинск.: Изд. Ю. УрГУ, 2001. 135 с.
24. D. R. Brown, T. Day, T. Caillat, and G. J. Snyder. J. of electr. mat. 42, 2014 - 2019 (2013). Crossref
25. C. Wagner. Progr. in Sol. Chem. Phys., 7, 1 - 37 (1972). Crossref
26. P. Peranantham, Y. L. Jeyachandran, C. Viswanathan, N. N. Praveena, P. C. Chitra, D. Mangalaraj, and Sa. K. Narayandass. Mater. Charact. 58, 756 (2007). Crossref
27. R. M. Murray, R. D. Heyding. Canadian Journal of Chemistry. 53, 878 - 887 (1975). Crossref
28. K. Chrissafis, N. Vouroutzis, K. M. Paraskevopoulos, N. Frangis, C. Manolikas. J. Alloys and Comp. 385, 169 - 172 (2004) doi. Crossref
29. X. Xing-Xing, X. Wen-Jie, T. Xin-Feng and Z. Qing-Jie. Chin. Phys. B 20, 087201 (2011). Crossref
30. P. Kubaschewski, and H. Nolting. Ben Bunsen-Ges. Phys. Chem., 77, 70 - 74 (1973). Crossref
31. N. Kh. Abrikosov, V. F. Bankina, M. A. Korzhuev, G. K. Demensky, O. A. Teplov. Sov. Phys. Solid State 25, 2911 - 2916 (1983). (In Russian) Н. Х. Абрикосов, В. Ф. Банкина, М. А. Коржуев, Г. К. Деменский, О. А. Теплов. Физика твердого тела. 25, 2911 - 2916 (1983).

Cited by (3)

1.
E. A. Fedorova, L. N. Maskaeva, V. F. Markov, V. I. Voronin, V. G. Bamburov. Inorg Mater. 55(2), 106 (2019). Crossref
2.
Marzhan M. Kubenova, Kairat A. Kuterbekov, Malik K. Balapanov, Rais K. Ishembetov, Asset M. Kabyshev, Kenzhebatyr Z. Bekmyrza. Nanomaterials. 11(9), 2238 (2021). Crossref
3.
Y. Kabirov, M. Belokobylsky, V. Popov, A. Letovaltsev, N. Prutsakova, A. Nikolaev, E. Chebanova. Lett. Mater. 13(2), 153 (2023). Crossref