TiC–30 wt % Fe Composite by Pressure-Assisted Electrothermal Explosion

V.T. Telepa, V.A. Shcherbakov, A.V. Shcherbakov show affiliations and emails
Received: 09 June 2016; Revised: 25 October 2016; Accepted: 25 October 2016
This paper is written in Russian
Citation: V.T. Telepa, V.A. Shcherbakov, A.V. Shcherbakov. TiC–30 wt % Fe Composite by Pressure-Assisted Electrothermal Explosion. Lett. Mater., 2016, 6(4) 286-289
BibTex   https://doi.org/10.22226/2410-3535-2016-4-286-289


Explored was the possibility for fabrication of net-shape refractory TiC-based cermet items by using the technique of forced electrothermal explosion (ETE). The items of high-melting ceramics are difficult to prepare by conventional powder metallurgy. Since in the ETE process we can attain temperatures as high as 3500 K, this technique seems rather promising for the purpose. In our conditions, the Ti melting point (3054 K) could be reached when the ETE process was carried out under pressure (up to 50 MPa). In this case, the synthesis of ceramic item and its densification (hot pressing) can be carried out in a one-stage process. Pressure-assisted electrothermal explosion in Ti–C–Fe blends (T ≈ 3500 K) was used to fabricate TiC–30 wt % Fe composite (ρ = 5.15 g/cm3, HV 19.4 GPa). At the heating rate w = 150 deg/s (j = 14 МА/m2), the reaction time was 7-10 s. In our mold, SHS reactions can be carried out under the following condition: Т ≈ 3500 K, P = 50 MPa, and w = 150 deg/s. According to XRD and SEM data, the combustion product represented a TiC–30 wt Fe composite, with Fe acting as a binder. Our method can be recommended for production of ceramic items with desired configuration in a one-stage technological process.

References (8)

1. A. G. Merzhanov. Combustion and Synthesis of Materials. Chernogolovka. Izd. ISMAN. (1998) 511 p [inRussian] [А. Г. Мержанов. Процессы горения и синтез материалов. Черноголовка Изд-во ИСМАН (1998), 511 с.].
2. A. G. Merzhanov, A. S. Mukasyan, Tverdoplamennoe gorenie (Solid-Flame Combustion), Moscow: Torus Press, 2007. [inRussian] [А. Г. Мержанов, А. С. Мукасьян. Твердопламенное горение, Изд-во Москва «Торус пресс» (2007) 336 с.].
3. A. S. Rogachev, A. S. Mukasyan. Combustion for Materials Synthesis. Boca Ration - London - New York, CRC Press. (2015) 421 p [inRussian] [А. С. Рогачев, А. С. Мукасьян. Горение для синтеза материалов: введение в структурную макрокинетику.М. Физматлит. 2012. 398 с.].
4. S. S. Kiparisov, Yu. V. Levinskii, A. P. Petrov, Karbid titana: Poluchenie, svoistva, primenenie (Titanium Carbide: Preparation, Properties, Application), Moscow: Metallurgiya, 1987. [inRussian] [С. С. Кипарисов, Ю. В. Левинский, А. П. Петров. Карбид титана, получение, свойство, применение. Изд-во Москва «Металлургия» (1987) 216 с.].
5. V. A. Shcherbakov, A. N. Gryadunov, V. T. Telepa andA.V. Shcherbakov. Int. J. Self-Propag High-Temp.Synth. 25 (1), 39 - 42 (2015).
6. V. A. Shcherbakov, V. T. Telepa, A. V. Shcherbakov. Ind. J. Self-Propag High-Temp. Synth. 24 (4) 251 - 252 (2015).
7. V. A. Shcherbakov, V. T. Telepa andA.V. Shcherbakov. Composites and nanostructures 8 (1) 70 (2016) [in Russian] [В. А. Щербаков, В. Т. Телепа, А. В. Щербаков. Композиты и наноструктуры. 8 (1) 70 (2016)].
8. S. S. Kiparisov, G. A. Libenson, Poroshkovaya metallurgiya (Powder Metallurgy), Moscow: Metallurgiya, 1991. [inRussian] [С. С. Кипарисов, Г. А. Либенсон, Порошковая металлургия, Москва «Металлургия» (1991) 431 с.].

Cited by (5)

Y. Kukta, A. Knyazeva. AIP Conference Proceedings. 1909, 020113 (2017). Crossref
V. T. Telepa, M. I. Alymov, V. A. Shcherbakov, A. V. Shcherbakov, I. D. Kovalev. Int. J Self-Propag. High-Temp. Synth. 28(3), 204 (2019). Crossref
A. S. Shchukin, D. Yu. Kovalev, A. E. Sytschev, A. V. Shcherbakov. Inorg. Mater. Appl. Res. 11(2), 271 (2020). Crossref
M. A. Anisimova. Russ Phys J. 64(4), 581 (2021). Crossref
I. S. Gordopolova, V. A. Shcherbakov. Combust Explos Shock Waves. 57(5), 559 (2021). Crossref

Similar papers