Thermostability of interface structure metal on graphene and silicene

E. Kurbanova1, V. Polukhin2,3, I. Chepkasov4
11Institute of Metallurgy Ural Branch Russian Academy of Sciences
2Institute of Metallurgy Ural Branch Russian Academy of Sciences
3Institute of Material Studies and Metallurgy, Ural Federal University
4Khakas State University
Basing on molecular dynamics method the study of thermic evolution of 2D and 3D nanoclusters has been carried out. There has been revealed nature of generation and activation kinetic processes, initiated structure transformation and boosing the thermostability of functional unities of two dimentional transition metallic systems deposited on grapheme and silicene substrates. Thus there has been formed by chemical bonds specific interfaces as functional unified low-dimentional systems. In the presented article results of the molecular and dynamic modeling executed with use of multiparticle potentials. There has been carried out the analysis the thermoactivity of processes of a relaxation, diffusion and formation of the interface structures metal/grapheme metal/silicene (Me: Ag, Ni, Al), their destruction, as analog of melting in low-dimensional systems. The diffusion components in the X–Y interface planes and the normal along axis Z for all considered Me/G systems depended differently on the heating temperature, reflecting the different natures of variations in the electron structure (adhesion energy and the types of sorption at interfaces). For interfaces with physical adsorption, variations in the diffusion activity differed in their smoothness with a notable rise for the contacts in the region of ~1000 K, and for Al/G/Al (with a double coating) in the region of~1800 K, but with a different degree of nonmonotonicity. For the chemisorption interfaces formed during the hybridization of πz – dz orbitals, however, slow growth at the initial stages of heating in the high-temperature region (~2000 K) changed with an abrupt increase in both diffusion components.
Received: 10 December 2015   Revised: 12 February 2016   Accepted: 20 February 2016
Views: 92   Downloads: 37
V.A. Polukhin, N.A. Vatolin. Rus. Chem. Rev. 84, 5 (2015).
L. Meng, Q. Sun Q, J. Wang, F.J. Ding. J. Phys. Chem. 116 (2012).
A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura. Phys. Rev. Lett. 2 (2012).
I.V. Chepkasov, Yu Ya Gafner, S.L. Gafner and S.P. Bardakhanov. Bull. Mater. Sci. 38, 3 (2015).
I.V. Chepkasov, Yu.Ya. Gafner, S.L. Gafner. Journal of Aerosol Science 91 (2016).
P. Vogt, P. De Padova, C. Quaresima, et al. Phys. Rev. Lett. 108 (2012).
Г.А. Мансури Принципы нанотехнологии. Исследование конденсированных веществ малых систем на молекулярном уровне. М.: Научный мир. 2008. 320с.
A.Ye.Galashev, V.A.Polukhin. In Computer Investigation of the Stability and Structure of Si and SiO2 Nanoparticles. Nova Science Publishers. New York. (2012) 130р.
M.E. Davila, L. Xian, S. Cahangirov. New J. Phys. 16 (2014).
A.E. Galashev, V.A. Polukhin, I.A. Izmodenov et al. Glass. Phys.Chem. 33, 1 (2007).
A.E. Galashev, V.A. Polukhin et al. Glass. Phys.Chem. 32 (2006).
V.A. Polukhin, N.A. Vatolin. Rasplavy. 3 (1998)
V.A. Polukhin, E.A. Kibanova. Russ. J. Phys. Chem. 73, 3 (1999).
R. Quhe, Y. Yaun, J. Zheng et al. Sci. Rep. 6 (2012).
J. Gao, J. Zhao. Sci. Rep. 2 (2012).
В.А. Полухин, Н.С. Митрофанова, Э.Д. Курбанова. Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, 6 (2014).
J.Y. Chen, A. Kutana, C.P. Collier, K.P. Giapis. Science. 310 (2005).
V.A. Polukhin, E.D. Kurbanova. J.Phys. Chem. A. 89, 3 (2015).
D. Hsieh, D. Qian, L. Wray et al. Nature. 452 (2008).
Y. Xu, B.Yan, H.-J. Zhang, J. Wang, G. Xu. Phys. Rev. Letttrs. (FilmsPRL). 111, 10 (2013).
V. A. Polukhin, E. D. Kurbanova, A. E. Galashev Russian Metallurgy (Metally). 2012, 8 (2012).
V. A. Polukhin, E. D. Kurbanova, A. E. Galashev Russian Metallurgy (Metally). 2014, 8 (2014).
Э.Д. Курбанова, В.А. Полухин, Н.С. Митрофанова, Л.К. Ригмант. Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, 7 (2015)