Features of the structure, deposition from arc discharge plasma

N.A. Smolanov1, V.A. Neverov2
1Ogarev Mordovia State University, Bolshevistskaya st., 68, Saransk, 430005, Russia
2N. A. Ogarev Mordovia State University, Bolshevistskaya st., 68, Saransk, 430005, Russia
Abstract
The paper reports results of investigation that has been carried out on the morphology, particle size, phase composition and the structure of particles deposited from the low-temperature plasma arc discharge on the walls of the vacuum chamber during the spray of a titanium cathode.An investigation has been carried out on the morphology (scanning electron microscope Quanta 200 i 3D FEI), particle size (Shimadzu SALD-3101), phase composition (diffractometer PANalytical Empyrian) and the structure of particles deposited from the low-temperature plasma arc discharge on the walls of the vacuum chamber during the spray of a titanium cathode. Particles with a strongly magnetic inclusions form several phases on the basses of sputtering cathode and reaction gases, which are residual ones or introducing into the vacuum chamber in wich plasma-chemical synthesis of films occur. The analysis of the particle size showed that the most typical size distribution of the particles is of the Gaussian type, or the distribution of the particles is described by a decreasing exponential function, similarly to the distribution of the particles from the TOKAMAK. During the deposition of particles from the low temperature plasma arc discharge onto the walls of the vacuum chamber their basic sizes are within the range of 70—130 microns. Using the method of small angle X-ray scattering (small-angle scattering X-ray difractometer Hecus S3‑MICRO), it is shown that the particles possess a fractal structure. The fractal dimensions of the particles in powders of various fractions are determined to be in the range of 20—180 µm. It is found that the particles of the powders under investigation have structural inhomogeneities of nanometer scale, the average values being in sufficiently narrow range of ~ 20—30 nm. Probably, this is due to the conditions under which the formation of dispersed particles take places, the chemical composition of the plasma flow, the strength of electric and magnetic fields in inter-electrode space. Formation of fractal-like aggregates occurs under the conditions of instability of the front of growth when small perturbations of the interfacebegin to grow much faster than neighboring areas. On the basis of the results obtained, the assumption is made on a similarity between the low-temperature plasma processes, beginning with the appearance finely dispersed drop fraction at the cathode spot, and drop-vapor erosion on the walls of TOKAMAK’s. The resulting structure of the condensate obtained may be regarded as the result of the interaction of dust plasma structures in electric and magnetic fields. It is likely that the plasma arc discharge structures we have studied are a consequence of the specific properties of the turbulent plasma flow with intermittency.
Accepted: 28 May 2015
Views: 262   Downloads: 48
References
1.
A. V. Ushakov, I. V. Karpov, A. A. Lepeshev. Materialovedeniye. 3, 48—51 (2012). (in Russian) [А. В. Ушаков, И. В. Карпов, А. А Лепешев. Материаловедение. 3, 48—51 (2012).]
2.
A. S. Saygash, A. A Sivkov. Nanotekhnika. 2, 62—66 (2008). (in Russian) [А. С. Сайгаш, А. А. Сивков. Нанотехника. 2, 62—66 (2008).]
3.
N. A. Smolanov, N. A. Pankin, V. V. Batin, E. P. Pavkin. Prikladnaya fizika. 1, 30—34 (2014). (in Russian) [Н. А. Смоланов, Н. А. Панькин, В. В. Батин, Е. П. Павкин. Прикладная физика. 1, 30—34 (2014).]
4.
N. A. Klinskaya, E. B. Koroloyva, V. A. Petrunichev and other. 5, 74—77 (1986). (in Russian) [Н. А. Клинская, Е. Б. Королева, В. А. Петруничев. Физика и химия обработки материалов. 5, 74—77 (1986).]
5.
N. A. Smolanov, V. A. Neverov, A. A. Panov. Bystrozakalennye materialy i pokrytiya. Sb. trudov. M. MATI. 2, 231—237 (2013). (in Russian) [Н. А. Смоланов, В. А. Неверов, А. А. Панов. Быстрозакаленные материалы и покрытия. Труды 12‑ой Всероссийской с международным участием научно-технической конференции в 2‑х томах. Сб. трудов. М. МАТИ. 2, 231—237 (2013).]
6.
http://ufn.ru / ru / articles / 2010 / 10 / c / [В. И. Крауз, Ю. В. Мартыненко, Н. Ю. Свечников, В. П. Смирнов, В. Г. Станкевич, Л. Н. Химченко. УФН. 180 (10), 1055—1079 (2010).]
7.
V. P. Budaev, L. N. Khimchenko. Fractal Grown of Deposited Films in Tokamak: Preprint IAE-6404 / 7. — M. (2006).
8.
A. D. Zalavutdinov, A. E. Gorodetsky, A. P. Zaharov. Voprosy atomnoy nauki i tekhniki. Ser. Termoyaderny sintez. 1, 39—45 (2011).] (in Russian) [Р. Х. Залавутдинов, А. Е. Городецкий, А. П. Захаров. Вопросы атомной науки и техники. Сер. Термоядерный синтез.1, 39—45 (2011).]
9.
D. I. Svergun, L. A. Feigin. X-ray and neutron small-angle scattering. M. Nauka. Ed. by Sci. Lighted. (1986) 280 p. (in Russian) [Д. И. Свергун, Л. А. Фейгин. Рентгеновское и нейтронное малоугловое рассеяние. М. Наука. Гл. ред. физ.‑мат. лит. (1986) 280 с.]
10.
V. P. Selyaev, VA. Neverov. Apparatura i metody issledovaniya dispersnykh sistem, Innovatsionnoye obrazovaniye. 4 (7), 71—120 (2013). (in Russian) [В. П. Селяев, В. А, Неверов. Инновационное образование. 4 (7), 71—120 (2013).]
11.
T. N. Vasilevskaay, T. V. Antropova. Solid State Physics. 51 (12), 2386—2393 (2009). (in Russian) [Т. Н. Василевская, Т. В Антропова. // Физика твердого тела. 51 (12), 2386—2393 (2009).]
12.
P. V. Konarev, M. V. Petoukhov, V. V. Volkov, D. I. Svergun. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Cryst. 39, 277—286 (2006).
13.
E. L. Dzidziguri, V. V. Levina, E. N. Sidorova. Fizika metallov i metallovedeniye. 91 (6), 51—57 (2001). (in Russian) [Е. Л. Дзидзигури, В. В. Левина, Е. Н. Сидорова. Физика металлов и металловедение. 91 (6), 51—57 (2001).]
14.
L. G. Diachkov. Mekhanizmy vrashcheniya plazmenno-pylevykh struktur v razryadakh postoyannogo toka v prodolnom magnitnom pole. Fizika nizkotemperaturnoy plazmy — 2011: materialy Vserossyskoy (s mezhdunarodnym uchastiyem) konferentsii. Petrozavodsk, PetrGU. 2, 152—158 (2011). (in Russian) [Л. Г. Дьячков. Физика низкотемпературной плазмы — 2011: материалы Всероссийской (с международным участием) конференции Петрозаводск, Изд-во ПетрГУ, 2, 152—158 (2011).]
15.
R. A. Buyanov, V. V. Chesnokov. Khimiya v interesakh ustoychivogo razvitiya. 13, 37—40 (2005). (in Russian) [Р. А. Буянов, В. В. Чесноков. Химия в интересах устойчивого развития. 13, 37—40 (2005).]
16.
M Cleman, O. D. Lavrentovich. Soft matter physics: An introduction. NY-Berlin-Heidelberg: Springer (2002) 637 p. [М Клеман., О. Д. Лаврентович. Основы физики частично упорядоченных сред: жидкие кристаллы, коллоиды, фрактальные структуры, полимеры и биологические объекты. М. ФИЗМАТЛИТ (2007) 680 с.]
17.
http://ufn.ru / en / articles / 2011 / 9 / a / [В. П Будаев., С. П. Савин., Л. М. Зеленый. УФН. 181 (9), 905—952 (2011).]
18.
G. V. Ostrovsky. Journal of Technical Physics. 83 (4), 59—68 (2013). (in Russian) [Г. В. Островская. ЖТФ. 83 (4), 59—68 (2013).]
Cited by
1.
Smolanov N.A., Journal of Physics: Conference Series 669(1), 012055 (2016).
2.
Смоланов Н.А., Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 81-88 (2017).