Achieving superplasticity through severe plastic deformation

M. Kawasaki, R.B. Figueiredo, T.G. Langdon show affiliations and emails
Accepted  14 February 2015
Citation: M. Kawasaki, R.B. Figueiredo, T.G. Langdon. Achieving superplasticity through severe plastic deformation. Lett. Mater., 2015, 5(3) 233-239
BibTex   https://doi.org/10.22226/2410-3535-2015-3-233-239

Abstract

The review paper briefly summarizes the principles of grain refinement in f.c.c. and h.c.p. metals and then presents examples of superplastic flow in several different metals processed by SPD (example of  the specimens elongation of ZnAl alloy subjected to equal channel angular pressing is presented on the figure)The processing of metals through the application of severe plastic deformation (SPD) provides an opportunity for refining the grains to the submicrometer or even the nanometer range in bulk materials. In principle, these ultrafine-grained materials should be ideal for achieving excellent superplastic properties but in practice this requires also that the microstructure has reasonable stability when testing in tension at elevated temperatures. Attaining superplastic elongations is an important prerequisite for using metals in commercial superplastic forming applications. Accordingly, this review briefly summarizes the principles of grain refinement in f.c.c. and h.c.p. metals where the mechanisms of grain refinement are different in these different crystal structures. The exceptional grain refinement produced by SPD techniques leads to excellent superplastic properties in many different materials. Especially, controlling the processing parameters of SPD techniques and using two-phase alloys are useful strategies for achieving excellent superplastic properties in metallic materials. This report presents numbers of examples of superplastic flow in several different metals and alloys processed by two representative SPD processing techniques of equal-channel angular pressing (ECAP) and high-pressure torsion (HPT). Finally, it is now possible to evaluate the flow process in superplasticity and this provides an opportunity to present the experimental data in terms of a deformation mechanism map.

References (50)

1. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).
2. T.G. Langdon, Acta Mater. 61, 7035 (2013).
3. R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006).
4. A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53, 893 (2008).
5. T.G. Langdon, Metall. Trans. A 13A, 689 (1982).
6. M. Kawasaki, T.G. Langdon, J. Mater. Sci. 42, 1782 (2007).
7. M. Kawasaki, T.G. Langdon, J. Mater. Sci. 49, 6487 (2014).
8. T.G. Langdon, Mater. Sci. Eng. A462, 3 (2007).
9. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A257, 328 (1998).
10. D. Kuhlmann-Wilsdorf, Scr. Mater. 36, 173 (1997).
11. S.E. Ion, F.J. Humphreys, S.H. White, Acta Metall. Mater. 30, 1909 (1982).
12. A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49, 1199 (2001).
13. R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 44, 4758 (2009).
14. R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 45, 4827 (2010).
15. Z. Horita, K. Matsubara, K. Makii, T.G. Langdon, Scr. Mater. 47, 255 (2002).
16. K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon, Acta Mater. 51, 3073 (2003).
17. H. Hasegawa, S. Komura, A, Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Mater. Sci. Eng. A265, 188 (1999).
18. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Acta Mater. 50, 553 (2002).
19. F.A. Mohamed, T.G. Langdon, Phil. Mag. 32, 697 (1975).
20. T.G. Langdon, Acta Metall. Mater. 42, 2437 (1994).
21. Y. Ma, M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Mater. Trans. JIM 37, 336 (1996).
22. R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, T.G. Langdon, Scr. Mater. 37, 1945 (1997).
23. K. Higashi, M. Mabuchi, T.G. Langdon, ISIJ Intl. 36, 1423 (1996).
24. M. Furui, H. Kitamura, H. Anada, T.G. Langdon, Acta Mater. 55, 1083 (2007).
25. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Scr. Mater. 35, 143 (1996).
26. H. Watanabe, T. Mukai, K. Ishikawa, K. Higashi, Scr. Mater. 46, 851 (2002).
27. V.N. Chuvil’deev, T.G. Nieh, M.Yu. Gryaznov, A.N. Sysoev, V.I. Kopylov, Scr. Mater. 50, 861 (2004).
28. R. Lapovok, R. Cottam, P.F. Thomson, Y. Estrin, J. Mater. Res. 20, 1375 (2005).
29. R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng. A430, 151 (2006).
30. R. Lapovok, Y. Estrin, M.V. Popov, T.G. Langdon, Adv. Eng. Mater. 10, 429 (2008).
31. R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 43, 7366 (2008).
32. R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng. A503, 141 (2009).
33. R.B. Figueiredo, T.G. Langdon, Scr. Mater. 61, 84 (2009).
34. R.B. Figueiredo, T.G. Langdon, Mater. Sci. Eng. A501, 105 (2009).
35. R.B. Figueiredo, T.G. Langdon, Adv. Eng. Mater. 10, 37 (2008).
36. R.B. Figueiredo, T.G. Langdon, Mater. Sci. Forum 584-586, 170 (2008).
37. H. Ishikawa, F.A. Mohamed, T.G. Langdon, Phil. Mag. 32, 1269 (1975).
38. T.G. Langdon, F.A. Mohamed, Scr. Metall. 11, 575 (1977).
39. M.M.I. Ahmed, F.A. Mohamed, T.G. Langdon, J. Mater. Sci. 14, 2913 (1979).
40. D.W. Livesey, N. Ridley, J. Mater. Sci. 17, 2257 (1982).
41. M. Kawasaki, T.G. Langdon, Mater. Trans. 49, 84 (2008).
42. P. Kumar, C. Xu, T.G. Langdon, Mater. Sci. Eng. A429, 324 (2006).
43. M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A528, 6140 (2011).
44. T.G. Langdon, Mater. Sci. Eng. A137, 1 (1991).
45. F.R.N. Nabarro, Report of a Conference on Strength of Solids, The Physical Society, London, U.K. (1948). p. 75.
46. C. Herring, J. Appl. Phys. 21, 437 (1950).
47. R.L. Coble, J. Appl. Phys. 34, 1679 (1963).
48. M. Kawasaki, T.G. Langdon, J. Mater. Sci. 47, 7726 (2012).
49. A.J. Barnes, J. Mater. Eng. Perform. 16, 440 (2007).
50. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Acta Mater. 48, 3633 (2000).

Cited by (1)

1.
V.N. Danilenko, S.N. Sergeev, J.A. Baimova, G.F. Korznikova, K.S. Nazarov, R. Kh. Khisamov, A.M. Glezer, R.R. Mulyukov. Materials Letters. 236, 51 (2019). Crossref

Similar papers