Centrifugal SHS-metallurgy of nitrogen steels

V.I. Yukhvid, D.M. Ikornikov, D.E. Andreev ORCID logo , V.N. Sanin, M.I. Alymov, N.V. Sachkova, V.N. Semenova, I.D. Kovalev show affiliations and emails
Received: 10 September 2018; Revised: 27 September 2018; Accepted: 04 October 2018
This paper is written in Russian
Citation: V.I. Yukhvid, D.M. Ikornikov, D.E. Andreev, V.N. Sanin, M.I. Alymov, N.V. Sachkova, V.N. Semenova, I.D. Kovalev. Centrifugal SHS-metallurgy of nitrogen steels. Lett. Mater., 2018, 8(4) 499-503
BibTex   https://doi.org/10.22226/2410-3535-2018-4-499-503

Abstract

Main stage centrifugal SHS-metallurgyThe possibility of obtaining doped nitrided steel by centrifugal SHS-metallurgy at atmospheric pressure is shown. The initial mixture for the production of alloyed cast steel included oxides of iron, manganese, nickel, molybdenum, vanadium, silicon, as well as aluminum, chromium and chromium nitride. Experimental studies were carried out on a centrifugal unit under the influence of an overload from 1 to 50g. It is shown that at 1g, combustion is accompanied by a strong sputtering of the mixture. Under the influence of overload, the sputtering is suppressed. Combustion products, cast steel and slag, are divided into 2 layers and have practically no adhesion. Combustion of the mixture is accompanied by intense convective mixing of the combustion products. Gravitational convection of a two-phase melt above the combustion front and the bubbling of gaseous products ensure high completeness of the chemical transformation of the initial mixture and a uniform composition of the steel. The main series of experiments was carried out with an overload of a = 50g. It was shown that in all studied ranges of the concentrations of Cr and Cr2N, the mixtures retain the ability to burn and are well separated. The introduction of chromium nitride into the initial mixture makes it possible to obtain nitrided steel with a nitrogen content of up to 0.3 – 0.4 wt %. According to the X-ray phase analysis, steel has a γ-Fe lattice. The displacement of the peaks and their broadening indicate the dissolution of the alloying elements in γ-Fe. Steel has a grain structure with narrow boundaries between the grains. Point selections localized in grains and at boundaries were also detected. From the analysis of the elements distribution in the steel and the composition of structural components, it follows that the base of steel is formed from the solution of Cr, Mn and Ni in Fe; narrow grain boundaries are formed from a solution of Fe, Mn, Mo and V in Cr; point selections predominantly contain Mn and Mo.

References

1. Yu. A. Shulte. Cold-resistant steels. Moscow, Metallurgiya (1970) 223 p. (in Russian) [Ю. А Шульте. Хладостойкие стали. Москва, Металлургия (1970) 223 с.].
2. V. P. Larionov, V. R. Kuzmin, O. I. Sleptsov, A. M. Bolshakova at als. Cold resistance of materials and construction elements: results and perspectives. Strength, operation life and diagnostics of metal construction elements. Novosibirsk, Nauka (2005) 290 p. (in Russian) [В. П. Ларионов, В. Р. Кузьмин, О. И. Слепцов, А. М. Большаков и др. Хладостойкость материалов и элементов конструкций: Результаты и перспективы. Прочность, ресурс и диагностика элементов металлоконструкций. Новосибирск, Наука (2005) 290 с.].
3. O. A. Bannykh, V. M. Blinov, M. V. Kostina. High-nitrogen corrosion-resistant austenite steels for high-rel items. 60-th anniversary of Baikov Institute of Metallurgy and Materials Science, Book of abstracts. Ed. N. P. Lyakishev. Moscow, ELIZ (1998) p. 192. (in Russian) [О. А. Банных, В. М. Блинов, М. В. Костина. Высокоазотистые коррозионностойкие аустенитные стали для высоконагруженных изделий. Институту металлургии и материаловедения им. А. А. Байкова 60 лет: Сб. научн. тр. Отв. ред. Н. П. Лякишев. Москва, ЭЛИЗ (1998) с. 192.].
4. O. A. Bannykh, V. M. Blinov. Development of high-nitrogen austenite and martensitic corrosion-resistant steels for high-rel items. Baikov Institute of Metallurgy and Materials Science - 75-th Anniversary: Book of abstracts. Ed. K. A. Solntsev. Moscow, Interkontakt Nauka (2013) p. 204. (in Russian) [О. А. Банных, В. М. Блинов. Разработка высокоазотистых аустенитных и мартенситных коррозионностойких сталей для высоконагруженных изделий. Институт металлургии и материаловедения им. А. А. Байкова РАН - 75 лет: Сб. научн. тр. под ред. академика К. А. Солнцева. Москва, Интерконтакт Наука (2013) с. 204.].
5. O. A. Bannykh, V. M. Blinov, M. V. Kostina, E. V. Blinov, S. O. Muradyan. Materialy v mashinostroenii. 89(2), 67 (2014). (in Russian) [О. А. Банных, В. М. Блинов, М. В. Костина, Е. В. Блинов, С. О. Мурадян. Материалы в машиностроении. 89(2), 67 (2014).].
6. E. A. Goli-Oglu, Z. Greisen, Yu.A Bokachev. Chernye Metally. 6, 53 (2018). (in Russian) [Е. А. Голи-Оглу, З. Грайсен, Ю. А. Бокачев. Черные металлы. 6, 53 (2018).].
7. L. S. Derevyagina, A. I. Gordienko, Y. I. Pochivalov, A. S. Smirnova. Physics of Metals and Metallography. 119(1), 83 (2018).
8. D. V. Kudashov, E. S. Mursenkov, P. P. Stepanov, G. V. Semernin, V. V. Kislica, S. A. Somov, A. V. Lozovskiy, M. R. Jarmuhametov. Metallurgist. 61(7 - 8), 656 (2017). Crossref
9. I. P. Shabalov, V. G. Filippov, O. N. Chevskaya, L. A. Baeva. Metallurgist. 61(5 - 6), 463 (2017). Crossref
10. A. V. Chervonnyi, V. V. Naumenko, A. V. Muntin, L. I. Efron, O. N. Chevskaya, I. V. Lyasotskii. Metallurgist. 60(9 - 10), 1038 (2017). Crossref
11. P. Layus, P. Kah, A. Zisman, M. Pirinen, S. Golosienko. International Journal of Mechanical and Materials Engineering. 11, 2 (2016). Crossref
12. S. A. Krylov, A. G. Evgenov, A. I. Scherbakov, A. A. Makarov. Trudy VIAM. 41(5), 1 (2016). (in Russian) [С. А. Крылов, А. Г. Евгенов, А. И. Щербаков, А. А. Макаров. Труды ВИАМ. 41(5), 1 (2016).].
13. Ts. V. Rashev. High-nitrogen steels. Metallurgy under pressure. Sofia, Prof. Marin Drinov (1995) 272 p. (in Russian) [Ц. В. Рашев. Высокоазотистые стали. Металлургия под давлением. София, Проф. Марин Дринов (1995) 272 с.].
14. I. V. Sapegina, G. A. Dorofeev, M. I. Mokrushina, B. E. Pushkarev, V. I. Ladyanov. Letters on Materials. 7(2), 137 (2017). (in Russian) [И. В. Сапегина, Г. А. Дорофеев, М. И. Мокрушина, Б. Е. Пушкарев, В. И. Ладьянов. Письма о материалах. 7(2), 137 - 140 (2017).]. Crossref
15. A. G. Merzhanov. Solid flame combustion. Chergolovka, Izd. ISMAN (2000) 239 p. (in Russian) [А. Г. Мержанов. Твердопламенное горение. Черноголовка, Издательство ИСМАН (2000) 239 c.].
16. M. Kh. Ziatdinov. Metallurg. (12), 50 (2008). (in Russian) [М. Х. Зиатдинов. Металлург. (12), 50 (2008).].
17. V. I. Yukhvid. Pure and Appl. Chem. 64(7), 977 (1992).
18. V. I. Yukhvid. Tsvetnaya metallurgiya. 5, 62 (2006). (in Russian) [В. И. Юхвид. Цветная металлургия. 5, 62 (2006).].
19. E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, Yu. M. Maksimov, V. I. Yukhvid. Promising materials and technologies of self-propagating high-temperature synthesis. Moscow, MISIS (2011) 378 p. (in Russian) [Е. А. Левашов, А. С. Рогачев, В. В. Курбаткина, Ю. М. Максимов, В. И. Юхвид. Перспективные материалы и технологии самораспространяющегося высокотемпературного синтеза. Москва, Изд. Дом МИСиС (2011) 378 с.].
20. V. I. Yukhvid, V. A. Gorshkov, V. N. Borsch, P. A. Miloserdov, N. V. Sachkova, M. I. Alymov. Letters on Materials. 7(3), 332 (2017). (in Russian) [В. И. Юхвид, В. А. Горшков, В. Н. Борщ, П. А. Милосердов, Н. В. Сачкова, М. И. Алымов. Письма о материалах. 7(3), 332 - 336 (2017).]. Crossref