Structural characterization and microwave properties of Fe75Si25 alloys produced by wet ball milling

K. Yazovskikh, S.F. Lomayeva, A.A. Shakov, G.N. Konygin, O.M. Nemtsova, A.O. Shiryaev, D.A. Petrov, K.N. Rozanov
Received: 31 July 2018; Revised: 19 September 2018; Accepted: 19 September 2018
Citation: K. Yazovskikh, S.F. Lomayeva, A.A. Shakov, G.N. Konygin, O.M. Nemtsova, A.O. Shiryaev, D.A. Petrov, K.N. Rozanov. Structural characterization and microwave properties of Fe75Si25 alloys produced by wet ball milling. Letters on Materials, 2018, 8(4) 419-423
BibTex   DOI: 10.22226/2410-3535-2018-4-419-423

Abstract

The frequency dependence of intrinsic permeability of Fe75Si25 particles was shown to depend strongly on the milling conditionsFe-Si alloys are known for excellent soft magnetic properties and are widely used as fillers of composite for microwave applications. A change in the size and the morphology of the powder particles has a significant influence on the microwave properties of composites filled with such powders. In this paper, Fe75Si25 powders were produced by wet ball milling. A solution of stearic acid in petroleum ether (a surfactant solution) and acetone were used as milling media. The influence of wet ball milling conditions on the morphology and the structure of the produced powders was studied by scanning electron microscopy, X-ray diffraction, Mossbauer spectroscopy and X-ray photoelectron spectroscopy. Wet ball milling of the alloy in an acetone leads to the formation of the particles of greater thickness and smaller size in comparison with the particles produced by wet ball milling in a surfactant solution. In both cases after milling the alloy is disordered. During the milling process Si concentration in the alloy decreases due to the formation of surface oxide layers enriched with silicon. The frequency dependence of microwave permittivity and permeability of composites filled with produced powders was studied. The depolarization factor, percolation threshold, and intrinsic permeability of produced powders particles were determined. The frequency dependence of intrinsic permeability of the particles was shown to depend strongly on the milling conditions. A change in the milling conditions makes it possible to produce Fe75Si25 powders with the required microwave properties.

References (25)

1.
J. Ding, Y. Li, L. F. Chen, C. R. Deng, Y. Shi, Y. S. Chow, T. B. Gang. J. Alloy Comp. 314, 262 (2001). DOI: 10.1016/S0925-8388(00)01234-2
2.
M. P. C. Kalita, A. Perumal, A. Srinivasan. J. Magn. Magn. Mater. 320, 2780 (2008). DOI: 10.1016/j.jmmm.2008.06.014
3.
P. C. Shyni, P. Alagarsamy. Physica B. 448, 60 (2014). DOI: 10.1016/j.physb.2014.02.032
4.
P. C. Shyni, A. Perumal. IEEE Trans. Magn. 50, 2101904 (2014). DOI: 10.1007/s003390050014
5.
C. D. Stanciu, T. F. Marinca, I. Chicinas, O. Isnard. J. Magn. Magn. Mater. 441, 455 (2017). DOI: 10.1016/j.jmmm.2017.06.010
6.
K. N. Rozanov, D. A. Petrov, E. P. Yelsukov, A. V. Protasov, A. S. Yurovskikh et al. Phys. Met. Metall. 117, 540 (2016). DOI: 10.1134/S0031918X16040116
7.
Z. Zhang, J. Wei, W. Yang, L. Qiao, T. Wang, F. Li. Physica B: Condensed Matter. 406, 3896 (2011). DOI: 10.1016/j.physb.2011.07.019
8.
M. Han, D. Liang, K. N. Rozanov, L. Deng. IEEE Trans. Magn. 49, 982 (2013). DOI: 10.1109/TMAG.2012.2227690
9.
K. N. Rozanov, A. V. Osipov, D. A. Petrov, S. N. Starostenko, E. P. Yelsukov. J. Magn. Magn. Mater. 321, 738 (2009). DOI: 10.1016/j.jmmm.2008.11.039
10.
C. Zhang, J. Jiang, S. Bie, L. Zhang, L. Miao, X. Xu. J. Alloy Comp. 527, 71 (2012). DOI: 10.1016/j.jallcom.2012.03.009
11.
A. A. Shakov, D. A. Petrov, K. N. Rozanov, A. V. Syugaev, S. F. Lomaeva. Prot. Met. Phys. Chem. Surf. 53, 94 (2017). DOI: 10.1134/S2070205117010166
12.
L. Cao, J.‑T. Jiang, Z.‑Q. Wang, Y.‑X. Gong, Ch. Liu, L. Zhen. J. Magn. Magn. Mater. 368, 295 (2014). DOI: 10.1016/j.jmmm.2014.05.032
13.
S. F. Lomayeva, A. V. Syugaev, A. N. Maratkanova, A. A. Shakov, K. N. Rozanov, D. A. Petrov, C. A. Stergiou. J. Alloys Comp. 721, 18 (2017). DOI: 10.1016/j.jallcom.2017.05.311
14.
Powder Diffraction File. Alphabetical Index. Inorganic Phases. International Center for Diffraction Data, Swarthmore, PA, USA (1985).
15.
O. M. Nemtsova. Nuclear Instruments and Methods in Physics Research Section B. 244(2), 501 (2006), DOI: 10.1016/j.nimb.2005.10.018
16.
A. M. Nicolson, G. F. Ross. IEEE Trans. Instrum. Meas. 19, 377 (1970). DOI: 10.1109/TIM.1970.4313932
17.
E. P. Yelsukov, V. A. Barinov, G. N. Konygin. Phys. Met. Metall. 62, 85 (1986).
18.
V. M. Fomin, E. V. Voronina, E. P. Yelsukov, A. N. Deev. Mater. Sci. Forum. 269 – 272, 437 (1998). DOI: 10.4028/www.scientific.net/MSF.269-272.437
19.
E. P. Elsukov, G. A. Dorofeev, A. I. Ul’yanov, A. V. Zagainov, A. N. Maratkanova. Phys. Met. Metall. 91, 258 (2001).
20.
D. A. Petrov, K. N. Rozanov, M. Y. Koledintseva. Influence of Higher-order Modes in Coaxial Waveguide on Measurements of Material Parameters: Proc. 2018 Int. Symp. EMC+SIPI, Long Beach, CA, USA (2018).
21.
S. N. Starostenko, K. N. Rozanov, A. O. Shiryaev, A. N. Shalygin, A. N. Lagarkov. J. Appl. Phys. 121, 245107 (2017). DOI: 10.1063/1.4989848
22.
K. Rozanov, M. Koledintseva. Analytical representation for frequency dependences of microwave permeability: IEEE Symp. Electromagn. Compat. Pittsburg, PA (2012).
23.
O. Acher, A. L. Adenot. Phys. Rev. B. 62, 11324 (2000). DOI: 10.1103/PhysRevB.62.11324
24.
L. D. Landau, E. M. Lifshitz. Electrodynamics of Continuous Media, Course of Theoretical Physics. Pergamon Press Ltd. (1960).
25.
T. Tsutaoka J. Appl. Phys. 93, 2789 (2003). DOI: 10.1063/1.1542651