Experimental investigation of the failure of steel AISI 316 by the methods of structural analyses

A.A. Abu Ghazal, P.S. Dzhumaev, A.V. Osintsev, V.I. Polsky, V.I. Surin show affiliations and emails
Received: 31 July 2018; Revised: 05 September 2018; Accepted: 15 November 2018
This paper is written in Russian
Citation: A.A. Abu Ghazal, P.S. Dzhumaev, A.V. Osintsev, V.I. Polsky, V.I. Surin. Experimental investigation of the failure of steel AISI 316 by the methods of structural analyses. Letters on Materials, 2019, 9(1) 33-38
BibTex   https://doi.org/10.22226/2410-3535-2019-1-33-38

Abstract

investigation of the destruction of steel AISI 316 by electron microscopy and SCP methods. To confirm the results obtained by the methods of structural analysis, methods of measuring microhardness and roughness were also used.The failure of reactor steel AISI 316 under tension was investigated by structural analysis and scanning contact potentiometry (SCP). In real time surface potentiograms were plotted by the change of which the growth of crack nucleus was tracked from its initiation till the stage of cup fracture formation. The nucleus of the microscopic crack on the potentiogram was first detected at the end of the next to the last cycle of testing at a load of 525 MPa in the yield region and then was persistently reproduced on potentiograms in subsequent tests up to the failure. The most noticeable changes in the parameters of dynamic waviness and roughness occurred at the moments of sharp crack growth. Using the results of the SCP method, three main stages of crack development were identified. In the first one, under loads corresponding to the conditional yield point, a nucleus was formed in the region of the maximum tangential stresses. This region of localization arises as a result of macroscopic loss of stability due to the significant mechanical energy accumulation by the system, which leads to an increase in the magnitudes of the plastic strain fluctuations. The second stage, the one of a progressive growth of the crack nucleus, is the longest in time and lasts from the moment of detection of the nucleus to the sample failure. The amplitude of the electrical potentials in the central part of the sample increased with the rise in intensity of the applied load which is associated with an increase in the inhomogeneity of the internal stress field around the nucleus, as well as the accelerating creep process and the growth of plastic strain in this region. At the pre-failure stage in the hardened surface layer, a macro-groove appears in the form of a standing deformation wave along the fracture line. Under the microscope, shear strain bands on the sample surface are also visible.

References

1. V. S. Krasnorutskiy, N. N. Belash, A. M. Abdullayev, A. I. Zhukov, I. A. Petelguzov, N. Mikhailov, E. A. Slabospitskaya. Questions of atomic science and technology. 2, 88 (2007). (in Russian) [В. С. Красноруцкий, Н. Н. Белаш, А. М. Абдуллаев, А. И. Жуков, И. А. Петельгузов, Н. А. Михайлов, Е. А. Слабоспицкая. Вопросы атомной науки и техники. 2, 88 (2007).].
2. A. V. Shulga. Journal of Nuclear Materials. 434, 133 (2013). Crossref
3. C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, J. Konys. Journal of Nuclear Materials. 418, 8 (2011).
4. H. B. Li, Z. H. Jiang, H. Feng, S. C. Zhang, L. Li, P. D. Han, R. D. K. Misra, J. Z. Li. Journal of Materials and Design. 84, 291 (2015).
5. V. I. Surin. Nuclear Engineering International. (2018). http://www.neimagazine.com/features/featurenew-potential-for-potentiometry-6146360/.
6. V. I. Surin And N. A. Evstyukhin, V. I. Knyazev, S. N. Tarasov, K. L. Pisarenko. Technique of reactor experiment. Moscow, Energoatomizdat. (1987) p. 80 - 85. (in Russian) [В. И. Сурин, Н. А. Евстюхин, В. И. Князев, С. Н. Тарасов, К. Л. Писаренко. Техника реакторного эксперимента. Москва, Энергоатомиздат. (1987) с. 80 - 85.].
7. V. I. Surin, N. A. Evstyukhin, V. I. Cheburkov J. Nucl. Mater. 218, 268 (1995).
8. V. I. Surin, Z. S. Volkova, R. A. Denisov, V. D. Motovilin., N. In. Raine. Global nuclear security. Moscow, National Research Nuclear University MEPhI. (2016), 4 (21), p. 51 - 62. (in Russian) [В. И. Сурин, З. С. Волкова, Р. А. Денисов, В. Д. Мотовилин., Н. В. Рейн. Глобальная ядерная безопасность. Москва, НИЯУ МИФИ. (2016), 4 (21), с. 51 - 62.].
9. A. A. Abu Ghazal, G. D. Bokuchava, I. V. Papushkin, V. I. Surin, E. A. Shief. Theses of the 17th international scientific and practical conference. Moscow (2017), p. 66. (in Russian) [А. А. Абу Газал, Г. Д. Богучава, И. В. Папушкин, В. И. Сурин, Е. А. Шеф. Тезисы 17-й международной научно-практической конференции. Москва (2017), с. 66.].
10. A. A. Abu Ghazal, R. A. Denisov, A. V. Lisenkov, V. I. Surin. Modern problems of theory machines / SEC “MS”. 4 (1), 184 (2016).
11. M. A. Shtremel. The strength of the alloys. Part II. Moscow, MISIS. (1997). (in Russian) [М. А. Штремель. Прочность сплавов. Часть II. Москва, МИСИС (1997).].
12. L. B. Zuev, S. A. Barannikova, S. Y. Breeders. Physics of metals and metallurgy. 87 (3), 77 (1999). (in Russian) [Л. Б. Зуев, С. А. Баранникова, С. Ю. Заводчиков. Физика металлов и металловедение. 87 (3), 77 (1999).].
13. V. E. Panin, V. S. Pleshanov, S. A. Burkova, S. A. Kobzeva. Materials science. 22 (1991). (in Russian) [В. Е. Панин, В. С. Плешанов, С. А. Буркова, С. А. Кобзева. Материаловедение. 22 (1991).].
14. V. I. Surin, Z. S. Volkova, A. A. Abu Ghazal, A. I. Elwahab, E. H. Alsmadi. Fundamental and applied research in the modern world: Materials of the XXI International scientific and practical conference. St. Petersburg (2018). p. 188 (in Russian) [В. И. Сурин, З. С. Волкова, А. А. Абу Газал, А. И. Алвахеба, Э. Х. Альсмади. Фундаментальные и прикладные исследования в современном мире: Материалы XXI Международной научно-практической конференции. Санкт-Петерсбург (2018) c. 188].
15. A.A. Abu Ghazal, G.D. Bokuchava, I.V. Papushkin, V.I. Surin, E.A. Shef. The application of scanning contact potentiometry method and diffraction of thermal neutrons at physico-mechanical tests of materials: Proc. of the XIII International Youth Scientific and Practical Conference “FUTURE OF ATOMIC ENERGY - AtomFuture 2017”, KnE Life Sciences (2017) p. 91. Crossref