Synthesis of porous NiAl-Ni3Al alloys for metal supports of solid oxide fuel cells

A. Maznoy, A. Kirdyashkin, V. Kitler, A. Guschin, A. Solovyev, I. Ionov
Received: 27 August 2015; Revised: 26 November 2015; Accepted: 21 December 2015
This paper is written in Russian
Citation: A. Maznoy, A. Kirdyashkin, V. Kitler, A. Guschin, A. Solovyev, I. Ionov. Synthesis of porous NiAl-Ni3Al alloys for metal supports of solid oxide fuel cells. Letters on Materials, 2015, 5(4) 491-496
BibTex   DOI: 10.22226/2410-3535-2015-4-491-496

Abstract

Synthesis of porous Ni+20%Al alloys with controlled shape of parts and porous structure was investigated. Combustions synthesis in thermal explosion mode under controlled heat losses was used for the sintering. Here thin cylindrical sample, compacted from mixture of nickel and aluminum powders and placed between stainless steel plates, was heated up to a temperature at which occurs an exothermic interaction between the reacting powders. Exothermicity derives from heat of formation of Ni3Al and NiAl phases. During the reaction the released heat sinks to the stainless steel plates, making it possible to preserve an original shape of the synthesized samples. Using stereometric metallography the effect of porosity and thickness of synthesized materials on following structure parameters was investigated: average sizes of frame elements, closed pores and through channels, specific surface and portion of open porosity. A structural particularity of synthesized materials which occurs under thermal gradients during explosion was revealed. Effect of temperature treatment of the synthesized material in an inert environment at 850 ÷ 1250 degrees centigrade on their pore structure, phase composition, permeability and strength was investigated. Porous materials with Ni3Al-NiAl composition, 0.5 ÷ 4 mm thickness, 0.39 ÷ 0,57 porosity, the size of the transport pores of 4.5 ÷ 7 microns was obtained. Conditions under which synthesized materials has optimal properties for use as a support of solid oxide fuel cells were found.

References (27)

1.
M. C. Tucker. Journal of Power Sources. 195 (15),4570 – 4582 (2010), DOI 10.1016/j.jpowsour.2010.02.035
2.
Y. B. Matus, L. C. De Jonghe, C. P. Jacobson, S. J. Visco.Solid State Ionics. 176 (5-6), 443 – 449 (2005), DOI 10.1016 / j.ssi.2004.09.056.
3.
P. Blennow, J. Hjelm, T. Klemenso, S. Ramousse, A. Kromp,A. Leonide, A. Weber. Journal of Power Sources. 196 (17),7117 – 7125 (2011), DOI 10.1016 / j.jpowsour.2010.08.088.
4.
Y. Matsuzaki, I. Yasuda. Journal of the ElectrochemicalSociety. 148(2),A126‐A131(2001), DOI10.1149/1.1339869
5.
P. Szabo, J. Arnold, T. Franco, M. Gindrat, A. Refke, A. Zagst, A. Ansar. Solid Oxide Fuel Cells 11 (Sofc-Xi).25 (2), 175 – 185 (2009), DOI 10.1149 /1.3205523.
6.
V. A. Sadykov, V. V. Usoltsev, Y. E. Fedorova,V. A. Sobyanin, P. V. Kalinin, A. V. Arzhannikov,A. Y. Vlasov, M. V. Korobeinikov, A. A. Bryazgin,A. N. Salanov, M. R. Predtechenskii, O. F. Bobrenok,A. S. Ulikhin, N. F. Uvarov, O. L. Smorygo,A. F. Il’yushchenko, V. Y. Ul’yanitskii, S. B. Zlobin. RussianJournal of Electrochemistry. 47 (4), 488 – 493 (2011),DOI 10.1134 /s1023193511040148.
7.
H. J. Grabke. Intermetallics. 7 (10), 1153 – 1158 (1999), DOI 10.1016 /s0966–9795 (99) 00037 – 0.
8.
H. X. Dong, Y. Jiang, Y. H. He, J. Zou, N. P. Xu,B. Y. Huang, C. T. Liu, P. K. Liaw. Materials Chemistryand Physics. 122 (2-3), 417 – 423 (2010), DOI 10.1016/ j.matchemphys.2010.03.017.
9.
A. A. Solovyev, N. S. Sochugov, S. V. Rabotkin,A. V. Shipilova, I. V. Ionov, A. N. Kovalchuk,A. O. Borduleva. Applied Surface Science. 310, 272 – 277(2014), DOI 10.1016/j.apsusc.2014.03.163.
10.
C. B. Lee, J. M. Bae. Journal of Power Sources. 176 (1), 62 – 69 (2008), DOI 10.1016 /j.jpowsour.2007.10.067.
11.
K. Morsi. Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing. 299 (1-2), 1 – 15 (2001) DOI 10.1016/s0921–5093 (00) 01407 – 6.
12.
H. X. Dong, Y. H. He, Y. Jiang, L. Wu, J. Zou, N. P. Xu, B. Y. Huang, and C. T. Liu. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 528 (13-14), 4849 – 4855(2011), DOI 10.1016/j.msea.2011.02.014.
13.
H. X. Dong, Y. H. He, J. Zou, N. P. Xu, B. Y. Huang,C. T. Liu. Journal of Alloys and Compounds. 492 (1-2),219 – 225 (2010), DOI 10.1016/j.jallcom.2009.12.018.
14.
K. C. Patil, S. T. Aruna, T. Mimani. Current Opinion inSolid State & Materials Science. 6 (6), 507 – 512 (2002) DOI 10.1016 / s1359–0286 (02) 00123 – 7.
15.
P. Mossino. Ceramics International. 30 (3), 311 – 332(2004), DOI 10.1016/s0272–8842 (03) 00119 – 6.
16.
V. I. Itin, Yu. S. Naiborodenko. High-temperaturesynthesis of intermetallic compounds. Textbook.Tomsk. TSU. (1989) 214 p. (in Russian) [В. И. Итин, Ю. С. Найбороденко. Высокотемпературный син-тез интерметаллических соединений, Томск, Изд.Томского университета. 1989. 214 c.]
17.
А. А. Soloviev, N. S. Sochugov, I. V. Ionov, A. I. Kirdyashkin,V. D. Kitler, А. S. Maznoy, Y. M. Maksimov, T. I. Sigfusson.Inorganic materials: applied research. 4 (5), 431 – 437(2013).
18.
S. H. Kim, M. H. Oh, K. Kishida, T. Hirano, D. M. Wee. Intermetallics. 13 (2), 129 – 136 (2005), DOI 10.1016/ j.intermet.2004.06.009.
19.
A. S. Maznoy, A. I. Kirdyashkin, Yu. M. Maksimov,Izvestiya vuzov. Powder metallurgy and functionalcoatings. 3, 44 – 50 (2011) (in Russian) [А. С. Мазной, А. И. Кирдяшкин, and Ю. М. Максимов. Известия вузов. Порошковая металлургия и функциональныепокрытия. 3, 44 – 50 (2011)].
20.
Binary state diagrams, part 1. Textbook. Moscow.Mashinostroenie (1996) 183 p. (in Russian) [Диаграммысостояния двойных металлических систем,Справочник Т 1, Москва, Машиностроение. 1996. 183 с.]
21.
A. I. Kirdyashkin, V. D. Kitler, V. G. Salamatov,R. A. Yusupov, Yu. M. Maksimov, Physics of combustionand explosion 43 (6), 31 – 39 (2007) (in Russian)[А. И. Кирдяшкин, В. Д. Китлер, В. Г. Саламатов,Р. А. Юсупов, Ю. М. Максимов, Физика горенияи взрыва. 43 (6), 31 – 39 (2007)].
22.
A. S. Maznoy,A. I.Kirdyashkin, V. D. Kitler,Yu. M. Maksimov,R. A. Yusupov, Advanced Materials 3, 5 – 16 (2013) (in Russian) [А. С. Мазной, А. И. Кирдяшкин, В. Д. Китлер,Ю. М. Максимов, Р. А. Юсупов. Перспективные материалы. 3, 5 – 16 (2013)].
23.
A.Biswas, S.K. Roy, K. R. Gurumurthy, N. Prabhu, and S. Banerjee. Acta Materialia. 50 (4), 757–773 (2002),DOI 10.1016 /s1359–6454 (01) 00387 – 1.
24.
J. Schmitz, J. Brillo, I. Egry, R. Schmid-Fetzer. InternationalJournal of Materials Research. 100 (11), 1529 – 1535(2009), DOI 10.3139/146.110221.
25.
A. T. Dinsdale, P. N. Quested. Journal of Materials Science.39 (24), 7221 – 7228 (2004), DOI 10.1023 / b:jmsc.0000048735.50256.96.
26.
H. Moon, S. D. Kim, S. H. Hyun, H. S. Kim. InternationalJournal of Hydrogen Energy. 33 (6), 1758 – 1768 (2008),DOI 10.1016 /j.ijhydene.2007.12.062.
27.
A. S. Maznoi, A. I. Kirdyashkin. Combustion Explosionand Shock Waves. 50 (1), 60 – 67 (2014), DOI 10.1134/ s0010508214010079.