On non-uniform strains in the structure of diluted magnetic semiconductors based on Jahn-Teller 3d- ions

E.N. Maksimova, V.I. Maksimov, T.P. Surkova

Abstract

Neutronographic research (T=300 K) having been carried out on highly doped Zn0.9Ni0.1S, Zn0.95Fe0.05Se, Zn0.99V0.01Se cubic crystals of diluted magnetic semiconductors shows that unhomogeneously distorted nano volumes, of ellipsoidal forms emerged at small dopant content in initial lattice, oriented to crystallographic directions which depending on Jahn-Teller ions type, are transformed to two-types form, leading to loss of initial orientations having been ascribed by supplied describing statistics of investigated phenomena. The figure illustrates observed changes direct scheme build on processed data of diffuse contribution partitioning to scattering on Zn1-хVхSe crystals, when the longest axes of nano regions at small dopant content (х~0.001) lie previously along <111> directions (the small cell of the cube containing the unhomogeneity corresponds to the elementary cell of the ZnSe structure), the case of high level doping are assumed to be considered as damage degrees of crystallographic planes of initial lattice.Doping of small even amount of 3d- ions possessing non-spherical symmetry of their 3d- shells, producing the Jahn-Teller effect, results in strong structure destabilizing of АIIBVI semiconductors. By the present work the thermal neutron diffuse scattering effects on the vicinity of the intensive Bragg reflections of Zn0.9Ni0.1S, Zn0.95Fe0.05Se, Zn0.99V0.01Se volume cubic single crystals obtained on double matrices and belonged to diluted magnetic semiconductors are investigated at T=300 K in details. The neutronographic data rows of structure reflections scanned in tangential directions are analyzed on conceptions of the changes to the worse structure quality arising from local non-uniform damaging of the initial crystal lattice. It was shown that the fitting of the neutron diffuse scattering patterns obtained from single crystals of zinc chalcogenides heavily doped by 3d- impurity reflects the statistics, characteristics of which are assigned by polarization directions emerged from disordering shear atomic displacements. Taking into account long-range actions of “electronic”-type deformation produced by foreign 3d-ions in the semiconductor matrice, the presented data compared to neutronographic results obtained on the crystals of the some binary compounds at substantially small levels of doping allow to conclude that the crystallographic anisotropy of distorted nano volumes lengths , appeared at small amount of destabilizing impurity, is changed by polarization anisotropy created by distortions developed on increasing of the impurity amount. The fitting results of neutron diffuse scattering patterns obtained from zinc-chalcogenide crystals heavily doped by 3d- ions generating additional destructive affects in the initial instable real structure of “pure” binary semiconductors become characteristics of damage degree of crystallographic planes of initial lattice.

References (20)

1.
J. Kossut, J. A. Gaj. (Eds.) Introduction to the Physics of Diluted Magnetic Semiconductors. Springer series in material sci., 144. Springer (2010) 469 p.
2.
M. D. McCluskey, E. E. Haller. Dopants and Defects in Semiconductors. CRC Press, Taylor & Francis Group, Bosca Raton, London, New-York (2018) 350 p.
3.
N. Myoung, V. V. Fedorov, S. B. Mirov, L. E. Wenger. J. of Luminesc. 132, 600 (2012). DOI: 10.1016/j.jlumin.2011.10.009
4.
K. S. Lee, G. Oh, E. K. Kim. Solar Energy 164, 262 (2018). DOI: 10.1016/j.solener.2018.02.074
5.
S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, V. Gapontsev. IEEE Journal of Selected Topics in Quantum Electronics, 2018, accepted for publication. DOI: 10.1109/JSTQE.2018.2808284
6.
M. Makkar, R. Viswanatha. Current Science. 112, 1421 (2017). DOI: 10.18520/cs/v112/i07/1421-1429
7.
M. R. Begam, N. M. Rao, S. Kaleemulla, N. S. Krishna, M. Kuppan, G. Krishnaiah, J. Subrahmanyam. Mat. Sci. in Semicond. Proc. 18, 146 (2014). DOI: 10.1016/j.mssp.2013.11.017
8.
D. Saikia, R. D. Raland, J. P. Borah. Phys.E: Low-dimens. Syst. and Nanostruct. 83, 56 (2016). DOI: 10.1016/j.physe.2016.04.016
9.
M. Hassan, S. Younas, F. Sher, S. S. Husain, S. Riaz, S. Naseem. Appl. Phys. A. 123, 352 (2017). DOI: 10.1007/s00339‑017‑0975‑5
10.
Y.‑T. Liu, L.‑P. Hou, S.‑Y. Zou, L. Zhang, B.‑B. Liang, Y.‑C. Guo, A. Bukhtiar, M. U. Farooq, B.‑S. Zou. Chin. Phys. Lett. 35, 037801 (2018). DOI: 10.1088/0256-307X/35/3/037801
11.
J. Furduna, J. Kosut. (Eds.) Semimagnetic Semiconductors. Academic Press, New-York (1988) 496p.
12.
V. Gudkov, A. Lonchakov, V. Sokolov, I. Zhevstovskikh. J. Korean Phys.Soc. 53, 63 (2008). DOI:10.3938/jkps.53.63
13.
V. V. Gudkov, I. B. Bersuker. In: Vibronic Interactions and the Jahn-Teller Effect: Theory and Applications. (M. Atanasov et. al. eds). Progress in Theoretical Chemistry and Physics 23. Springer Science + Business Media B. V. (2012). P.143 – 161. DOI: 10.1007/978‑94‑007‑2384‑97
14.
S. F. Dubinin, V. I. Sokolov, S. G. Teploukhov, V. D. Parkhomenko, V. V. Gudkov, A. T. Lonchakov, I. V. Zhevstovskikh, N. B. Gruzdev. Phys. of the Solid State. 49, 1235 (2007). (in Russian) [С. Ф. Дубинин, В. И. Соколов, С. Г. Теплоухов, В. Д. Пархоменко, В. В. Гудков, А. Т. Лончаков, И. В. Жевстовских, Н. Б. Груздев. ФТТ. 49(7), 1177 (2007).] DOI: 10.1134/S1063783407070062
15.
V. S. Urusov, N. N. Eremin. Kristallokhimija. Kratkii kurs. Ch.2. Moscow, Izd-vo Moskovskogo Universiteta (2005) 125 p. (in Russian) [В. С. Урусов, Н. Н. Еремин. Кристаллохимия. Краткий курс. Ч.2. Москва, Изд-во Московского университета (2005) 125 с.]
16.
A. A. Rempel, A. I. Gusev. Nestehiometrija v tverdom tele. Moskva, Fizmatlit (2018) 640 p. (in Russian) [А. А. Ремпель, А. И. Гусев. Нестехиометрия в твёрдом теле. Москва, Физматлит (2018) 640 с.]
17.
S. F. Dubinin, V. I. Sokolov, S. G. Teploukhov, V. D. Parkhomenko, N. B. Gruzdev. Phys. of the Solid State. 48, 2275 (2006). (in Russian) [С. Ф. Дубинин, В. И. Соколов, С. Г. Теплоухов, В. Д. Пархоменко, Н. Б. Груздев. ФТТ. 48, 2151 (2006).] DOI: 10.1134/S1063783406120067
18.
V. I. Maksimov, S. F. Dubinin, V. D. Parkhomenko. J. of Surface Investigation 7, 105 (2013). (in Russian) [В. И Максимов, С. Ф. Дубинин, В. Д. Пархоменко. Поверхность. 2, 9 (2013).] DOI: 10.1134/S1027451013010278
19.
V. F. Agekyan. Physics of the Solid State. 44, 2013 (2002). (in Russian) [В. Ф. Агекян. ФТТ. 44(11), 1921 (2002).] DOI: 10.1134/1.1521450
20.
V. I. Maksimov, E. N. Maksimova, T. P. Surkova. Physics of the Solid State. 60, 49 (2018). (in Russian) [В. И. Максимов, Е. Н. Максимова, Т. П. Суркова. ФТТ. 60(1), 50 (2018).] DOI: 10.1134/S1063783418010122