A model for intermediate quasi-molecular state and variants of chemical element synthesis

M. Kashchenko, V. Balakirev show affiliations and emails
Received 08 February 2018; Accepted 19 March 2018;
This paper is written in Russian
Citation: M. Kashchenko, V. Balakirev. A model for intermediate quasi-molecular state and variants of chemical element synthesis. Lett. Mater., 2018, 8(2) 152-157
BibTex   https://doi.org/10.22226/2410-3535-2018-2-152-157

Abstract

The scheme of the simplest   intermediate quasi-molecular state  model : сirсular orbit with paired electrons between two nucleiIn the present work, the simplest quasi-classic model of intermediate quasi-molecular state (IQS) is discussed. From the one hand, the model is based upon Bohr’s idea about a binding electron orbit of hydrogen molecule having a round form with the orbital plane orthogonal to the section connecting the nuclei. From the other hand, the model permits coupling of electrons (with opposite spins) owing to non-potential contact interaction that had been introduced in hadronic mechanics of Santilli. In order to underline the specifics of the results of such interactions, term “isoparticles” is used in hadronic mechanics. Using a pair of bivalent oxygen ions, it is shown that the simplest model allows drawing the nuclei together until critical distances R_c≈〖10〗^(-13) м. In the discussion of the results, an additional possibility of element synthesis for IQS is noted. This possibility is connected with exchange of virtual isopositron-isoelectron pairs between the near-coming nuclei. The upper level of such interaction radius [R_int ]_max corresponds to R_c≈〖10〗^(-13) m in the case of exchange of virtual positroniums (with rest energy ≈ 1 MeV), while the lower level [R_int ]_min≈〖10〗^(-15) m is realized in the case of virtual π^0 - mesons interchange. As soon as in hadronic mechanics π^0 - meson is interpreted as a bonded state of isopositron and isoelectron (with rest energy ≈ 135 MeV), the offered mechanism of exchange naturally allows the existence of virtual pairs with energies ε in the interval 1 MeV ≤ε ≤135 MeV.

References (15)

1. S. S. Gershtein, Yu. V. Petrov, L. I. Ponomarev. Sov. Phys. Usp. 33(8), 591 (1990). Crossref
2. M. Fleischmann, S. Pons. J. Electroanal., 261, 301 (1989).
3. D. D. Afonichev, T. I. Nazarova. Letters on materials. 7(1), 17 (2017). (in Russian) [Д. Д. Афоничев, Т. И. Назарова. Письма о материалах. 7(1), 17 (2017).]. Crossref
4. V. I. Dubinko, D. V. Laptev. Letters on materials. 6(1), 16 (2016). Crossref
5. V. V. Krymskiy, and V. F. Balakirev. Doklady Physical Chemistry. 385(4 - 6), 197 (2002). Crossref
6. V. F. Balakirev, V. V. Krymskiy, B. V. Bolotov et al. Interconversion of chemical elements. Ekaterinburg, UB RAS (2003) 97 p. (in Russian) [В. Ф. Балакирев, В. Крымский, Б. В. Болотов и др. Взаимопревращения химических элементов. Екатеринбург, УрО РАН (2003) 97 с.].
7. V. V. Krymskiy, V. F. Balakirev, N. V. Plotnikova. J. Chem. Chem. Eng. 9, 211 (2015). Crossref
8. M. P. Kashchenko, V. F. Balakirev. Letters on materials. 7(4), 380 (2017). Crossref
9. R. M. Santilli. Foundations of Hadronic Chemistry. With Applications to New Clean Energies and Fuels. Boston-Dordrecht-London, Kluwer Academic Publishers (2001) 554p.
10. N. Bohr. In: Phil. Mag. 26 (151), 1 - 25; 26 (153), 476 - 502, 857 - 875 (1913). [Бор Н. В книге: Избранные научные труды. Т. 1. (Под ред. Е. И. Тaмма, В. А. Фока, Б. Г. Кузнецова. Составитель У. И. Франкфурт). Москва, Наука (1970) 676 с. О строении атомов и молекул. с. 84 - 148.].
11. D. Bohm. Phys. Rev. 85, 166 (1952).
12. A. Einstein, B. Podolsky and N. Rosen. Phys. Rev. 47, 777 (1935).
13. G. Greenstein, A. G. Zajonc. The Quantum Challenge. Modern Research on the Foundatios of Quantum Mechanics. Boston-Toronto-London-Singapore, Jones and Bartlett Publishers (2006) 296p.
14. R. O. Bartini. Soviet Physics. Doclady. 163(4), 861 (1965). (in Russian) [Р. О. Бартини. ДАН СССР. 163(4), 861 (1965).].
15. V. I. Kostitsyn. Theory of multidimensional spaces. Moscow, Book house “LIBROCOM” (2013) 136p. (in Russian) [В. И. Костицын. Теория многомерных пространств. Изд. 3-е, доп. Москва, Книжный дом “ЛИБРОКОМ” (2013) 136с.].

Cited by (4)

1.
M. Kashchenko, N. Kashchenko. Lett. Mater. 9(3), 316 (2019). Crossref
2.
M. Kashchenko, V. Balakirev, N. Kashchenko, M. Smirnov, Y. Chepelev, V. Ilyushin, N. Nikolaeva, V. Pushin. Lett. Mater. 10(1), 66 (2020). Crossref
3.
M. Kashchenko, N. Kashchenko. Lett. Mater. 10(3), 266 (2020). Crossref
4.
M. Kashchenko, V. Balakirev, N. Kashchenko, М. Smirnov, Y. Chepelev, V. Ilyushin, N. Nikolaeva, V. Pushin. Lett. Mater. 10(4), 486 (2020). Crossref