Achieving room-temperature superplasticity in an ultrafine-grained Zn-22% Al alloy

U. Tokuteru1, T. Yorinobu1, M. Kawasaki2*, K. Higashi1§
1Department of Materials Science, Osaka Prefecture University, 1-1, Gakuen-sho, Naka-ku, Sakai, Osaka 599-8531, Japan
2Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni, Seongdong-gu, Seoul 133-791, South Korea
Abstract
The mechanisms of creep and superplasticity occurring in conventional coarse-grained materials are now understood well. However, recent study advances in the production of bulk metals with submicrometer grain sizes which provide the opportunity to demonstrate improved mechanical properties. Thermo-mechanical processing is used in conventional industrial practice to achieve substantial grain refinement in bulk metals whereas the smallest grain sizes achieved in this way are of the order of a few micrometers and generally it is not possible to achieve grain sizes within the submicrometer or nanometer range. In this report, synthesis of an ultrafine-grained Zn-22 % Al eutectoid alloy was demonstrated through solutionizing followed by thermo-mechanical processing. Microstructural investigations revealed there are stable equiaxed ultrafine grain sizes of ~0.63 μm with homogeneous distributions of Zn and Al grains. Tensile testing demonstrated the occurrence of excellent room-temperature superplasticity with a maximum elongation of 400 % at a strain rate of 1.0×10-3 s-1 where the elongation is one of the highest room-temperature superplastic elongation recorded to date in Zn-22 % Al alloy. However, the strain rate sensitivity of superplastic flow was measured as ~0.24 which is lower than the theoretical value of ~0.5 for conventional superplasticity. The present study estimates a threshold stress as one of possible reasons for lowering the strain rate sensitivity of room-temperature superplastic flow in the ultrafine-grained Zn-22 % Al alloy.
Received: 06 February 2015   Accepted: 13 February 2015
Views: 134   Downloads: 49
References
1.
T.G. Langdon, J. Mater. Sci. 44, 5998 (2009).
2.
T.G. Langdon, Mater. Sci. Eng. A174, 225 (1994).
3.
H. Ishikawa, D.G. Bhat, F.A. Mohamed, T.G. Langdon, Metall. Trans. 8A, 523 (1977).
4.
M.M.I. Ahmed, T.G. Langdon, Metall. Trans. 8A, 1832 (1977).
5.
K. Higashi, T. Ohnishi, Y. Nakatani, Scripta Metall. 19, 821 (1985).
6.
Y. Ma, T.G. Langdon, Metall. Mater. Trans. A 25A, 2309 (1994).
7.
F.A. Mohamed, T.G. Langdon, Acta Metall. 23, 117 (1975)
8.
H. Ishikawa, F.A. Mohamed, T.G. Langdon, Phil. Mag. 32, 1269 (1975).
9.
F.A. Mohamed, M.M.I. Ahmed, T.G. Langdon, Metall. Trans. 8A, 933 (1977).
10.
M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).
11.
ROC Patent Publication No. I273023.
12.
R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006).
13.
R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, Scripta Mater. 42, 163 (2000).
14.
A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 53, 893 (2008).
15.
K. Makii, Y. Mimura, H. Ueda, Japan Patent Office (1999) 11–222643.
16.
P. Kumar, C. Xu, T.G. Langdon, Mater. Sci. Eng. A410-411, 447 (2005).
17.
M. Kawasaki, T.G. Langdon, Mater. Trans. 49, 84 (2008).
18.
M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A503, 4851 (2009).
19.
M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A528, 6140 (2011).
20.
M. Kawasaki, T.G. Langdon, Mater. Trans. 53, 87 (2012).
21.
M.R. Azpeitia, E.E.M. Flores, G. Torres-Villaseñor, J. Mater. Sci. 47, 6206 (2012).
22.
T. Tanaka, K. Makii, A. Kushibe, K. Higashi, Mater. Trans. 43, 2449 (2002).
23.
T. Tanaka, K. Makii, A. Kushibe, M. Kohzu, K. Higashi, Scripta Mater. 49, 361 (2003).
24.
T. Tanaka, K. Higashi, Mater. Trans. 45, 1261 (2004).
25.
T. Tanaka, K. Higashi, Mater. Trans. 45, 2547 (2004).
26.
T. Tanaka, H. Watanabe, M. Kohzu, K. Higashi, Mater. Sci. Forum 447-448, 489 (2004).
27.
T. Tanaka, M. Kohzu, Y. Takigawa, K. Higashi, Scripta Mater. 52, 231 (2005).
28.
P. Kumar, C. Xu, T.G. Langdon, Mater. Sci. Eng. A429, 324 (2006).
29.
T. Hirata, T. Tanaka, S.W. Chung, Y. Takigawa, K. Higashi, Scripta Mater. 56, 477 (2007).
30.
S.H. Xia, J. Wang, J.T. Wang, J.Q. Liu, Mater. Sci. Eng. A493, 111 (2008).
31.
M. Demirtas, G. Purcek, H. Yanar, Z.J. Zhang, Z.F. Zhang, Mater. Sci. Eng. A620, 233 (2014).
32.
K. Makii, S. Furuta, K. Aoki, A. Kushibe, T. Tanaka, K. Higashi, Mater. Sci. Forum 447-448, 497 (2004).
33.
A. Kushibe, Y. Takigawa, K. Higashi, K. Aoki, K. Makii, T. Takagi, Mater. Sci. Forum 551-552, 583 (2007).
34.
T.K. Ha, W.B. Lee, C.G. Park, Y.W. Chang, Metall. Mater. Trans. A 28A, 1771 (1997).
35.
T.K. Ha, J.R. Son, W.B. Lee, C.G. Park, Y.W. Chang, Mater. Sci. Eng. A307, 98 (2001).
36.
H. Naziri, R. Pearce, Acta Metall. 22, 1321 (1974).
37.
O.A. Kaibyshev, B.V. Rodionov, R.Z. Valiev, Acta Metall. 26, 1877 (1978).
38.
H. Naziri, R. Pearce, M.H. Brown, K.F. Hale, Acta Metall. 23, 489 (1975).
39.
G. Torres-Villaseñor, J. Negrete, Mater. Sci. Forum 243–245, 553 (1997).
40.
I.-C. Choi, Y.-J. Kim, B. Ahn, M. Kawasaki, T.G. Langdon, J.-I. Jang, Scripta Mater. 75, 102 (2014).
41.
S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Nature 398, 684 (1999).
42.
Y. Huang, T.G. Langdon, J. Mater. Sci. 37, 4993 (2002).
43.
Y. Huang, T.G. Langdon, Mater. Sci. Eng. A358, 114 (2003).
44.
M. Demirtas, G. Purcek, H. Yanar, Z.J. Zhang, Z.F. Zhang, J. Alloys Compds 623, 213 (2015).
45.
R.Z. Valiev, M.Yu. Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, T.G. Langdon, J. Mater. Sci. 45, 4718 (2010).
46.
N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A543, 117 (2012).
47.
Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, E.J. Lavernia, Mater. Sci. Eng. A525, 68 (2009).
48.
T. Tanaka, Y. Takigawa, K. Higashi, Scripta Mater. 58, 643 (2008).
49.
T.G. Langdon, Acta Metall. Mater. 42, 2437 (1994).
50.
H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps, (Pergamon Press Oxford, 1982) p. 44.
51.
P. Shariat, R.B. Vastava, T.G. Langdon, Acta Metall. 30, 285 (1982).