Scalar dislocation density in fragments with different substructure types

E.V. Kozlov, N.A. Popova, N.A. Koneva show affiliations and emails
Received 01 March 2011; Accepted 24 March 2011;
This paper is written in Russian
Citation: E.V. Kozlov, N.A. Popova, N.A. Koneva. Scalar dislocation density in fragments with different substructure types. Lett. Mater., 2011, 1(1) 15-18
BibTex   https://doi.org/10.22226/2410-3535-2011-1-15-18

Abstract

The work is experimental. A structure of the martensite deformed steel was studied by TEM method. The dependence of scalar dislocation density on a size of fragments having different dislocation substructures in martensite steel was determined. It was established that a type of the dislocation substructure determines a character of the dependence of scalar dislocation density on fragment size. Physical reasons of this behavior was revealed.

References (17)

1. G.V. Kyrdyumov, L.M. Utevskii, R.I. Entin.Transformations in Iron and Steel. M.: Nauka, (1977)236p.
2. H.K. Bhadesia. Bainite in steels, London: The Institute ofMaterials. (1992) 451p.
3. R.Z. Valiev, T.G. Langdon. Progr. Mat. Sci. 51, 881 (2006).
4. N.I. Noskova, R.R. Mulyukov. Submicrocrystalline andnanocrystalline metals and alloys. Yekaterinburg: UrBRAS, (2003) 279p. (in Russian).
5. E.V. Kozlov, N.A. Koneva, N.A. Popova. PhysicalMezomech. 12 (4), 93 (2009). (in Russian).
6. E.V. Kozlov, N.A. Popova, N.A. Koneva. FundamentalProblems of Modern Materialovedeniya. 6 (2), 14 (2009).(in Russian).
7. N.A. Koneva, E.V. Kozlov, N.A. Popova. FundamentalProblems of Modern Materialovedeniya. 7 (1), 64 (2010).(in Russian).
8. N.A. Koneva, E.V. Kozlov, N.A. Popova, et al. Mat. Sci.Forum. 633-634, 605 (2010).
9. N.A. Koneva, N.A. Popova, E.V. Kozlov. Bulletin of theRussian Academy of Sciences; Physics. 74 (5), 592 (2010).
10. D. Kuhlmann-Wilsdorf. Phil. Mag. A 79, 955 (1999).
11. L.P. Kubin, C. Fressengeas, G. Ananthakrishna. InDislocation in Solids. V.11. Ed. F.N.R. Nabarro and M.S.Duesbery. Amsterdam: Elsevier, 101-192 (2002).
12. M.F. Ashby. Phil. Mag. 21, 399 (1970).
13. H. Conrad. In Ultrafine-Grain Metals. Ed. J.J. Burke andV. Weiss. Syracuse: Syracuse University (1973) p. 206.
14. A.H. Orlov. Fizika metallov i metallovedenie. 44, 966(1977). (in Russian).
15. M.A. Meyers, K.K. Chawla. Mechanical Behavior ofMaterials. New Jersey: Prentice-Hall, Inc. (1998) 680p.
16. E.V. Kozlov, N.A. Koneva, L.A. Teplyakova et al. Mat. Sci.Eng. A 319-321, 261 (2001).
17. R.W. Cahn. The Coming of Materials Science.Amsterdam: Elsevier Science, Ltd. (2001) 571p.

Cited by (4)

1.
B. Rakhadilov, A. Kengesbekov, L. Zhurerova, R. Kozhanova, Z. Sagdoldina. Machines. 9(2), 24 (2021). Crossref
2.
K. V. Aksenova, V. E. Gromov, Yu. F. Ivanov, E. S. Vashchuk, O. A. Peregudov. Izv. vys�. ucebn. zaved., Cern. metall. 65(9), 654 (2022). Crossref
3.
K. Aksenova, V. Gromov, Y. Ivanov, R. Qin, E. Vashchuk. Metals. 12(11), 1985 (2022). Crossref
4.
L. I. Trishkina, T. V. Cherkasova, A. N. Solov’ev, N. V. Cherkasov. Phys. Solid State. (2023). Crossref