Dissolution of the second phase particles in the course of the equal channel angular pressing of diluted Cu Cr Zr alloy

I.A. Faizov, R.R. Mulyukov, D.A. Aksenov, S.N. Faizova, N.V. Zemlyakova, K.R. Cardoso, Y. Zeng
Received: 11 December 2017; Revised: 21 January 2018; Accepted: 22 January 2018
This paper is written in Russian
Citation: I.A. Faizov, R.R. Mulyukov, D.A. Aksenov, S.N. Faizova, N.V. Zemlyakova, K.R. Cardoso, Zeng Yuansong. Dissolution of the second phase particles in the course of the equal channel angular pressing of diluted Cu Cr Zr alloy. Letters on Materials, 2018, 8(1) 110-114
BibTex   DOI: 10.22226/2410-3535-2018-1-110-114

Abstract

Fig 1. The enthalpy release rate under linear heating
TP – quenched samples with supersaturated solid solution
0 – sample in the initial state before ECAP
2 – sample after 2 ECAP pass

Fig. 2. Particles' size distribution on the mesoscale (SEM) in the initial state and after 8 passes of ECAP

Table 1. Changes in the distribution density of particles depending versus their sizes on different stages of processing (TEM)Changes of properties and the second phase particles' distribution in diluted CuCrZr alloy in the course of equal channel angular pressing (ECAP) and post-deformation annealing are investigated. To decrease the concentration of alloying elements dissolved in the copper matrix, samples of the alloy were thermally aged prior to the ECAP. Temperature of annealing, 450°C, was the same as the one used for the subsequent post-deformation aging, and the time of annealing was long enough to reach a practically equilibrium state. The enthalpy release rate curve of the ECAP-processed sample, unlike the one for the initial state exhibits an exopeak in the temperature range 440..470°C, which is typical for breakdown of the solid solution in alloys of this system. The post-deformation aging causes a significant increase in the tensile strength as compared to the value immediately after the ECAP. This increase can be related only to the dispersion strengthening that is confirmed by the observation of higher density of particles after the aging. These facts unambiguously indicate that the solid solution at the aging temperature is supersaturated, i.e. its concentration increased in the course of the ECAP due to the deformation-induced dissolution of the second phases. This conclusion agrees with the behavior of the electrical conductivity that noticeably decreases upon the ECAP and recovers its initial value after the aging. As the density of structural defects is significantly different in the initial and final states, the observed decrease can be related only to the lattice distortion due to dissolved foreign atoms.

References (22)

1.
A. Ye. Ermakov. Phys. Metals Metallogr. 11, 4 (1991) (in Russian) [А. Е. Ермаков, ФММ, 11, 4 (1991)]
2.
P. H. Shingu, K. N. Ishihara, J. Kuyama. Proc. of Thirty-Fourth Japan Congress on Mat. Res., Kyoto, Japan, 19 (1991).
3.
A. Ye. Yermakov. Mat. Sci. Forum, 179 – 181, 455 (1995).
4.
R. B. Schwarz, W. L. Johnson. Phys. Rev. Lett. 51, 415 (1983). DOI: 10.1103/PhysRevLett.51.415
5.
C. E. Rodriquez Torres, F. N. Sanches, L. A. Mendoza Zeilis. Phys. Rev. B51 (18), 12142 (1995). DOI: 10.1103/PhysRevB.51.12142
6.
U. Czubayko, N. Wanderka, V. Naundorf, V. A. Ivchenko, A. Ye. Yermakov, M. A. Uimin, H. Wollenberger. Mater. Sci and Eng. A327, 54 (2002). DOI: 10.1016/S0921-5093(01)01875-5
7.
N. Wanderka, U. Czubayko, V. Naundorf, V. A. Ivchenko, A. Ye. Yermakov, M. A. Uimin, H. Wollenberg. Ultramicroscopy, 89, 189 (2001). DOI: 10.1016/S0304-3991(01)00104-8
8.
C. Bansal, Z. Q. Gao, L. B. Hong, B. Fultz. J. Appl. Phys. 76, 5961 (1994). DOI: 10.1063/1.358375
9.
S. A. Starikov, A. R. Kuznetsov, Yu. N. Gornostyrev, V. V. Sagaradze. Diagnostics, Resource and Mechanics of materials and structures. 6, 48 (2016). DOI: 10.17804/2410-9908.2016.6.048-062
10.
A. V. Korolev, E. G. Gerasimov, V. A. Kazantsev, A. I. Deryagin, V. A. Zavalishin. Phys. Metals Metallogr. 79, 136 (1995). (in Russian). [А. В. Королев, Е. Г. Герасимов, В. А. Казанцев, А. И. Дерягин, В. А. Завалишин. ФММ. 79 (2), 136 (1995)].
11.
V. V. Sagaradze, S. V. Morozov, V. A. Shabashov, L. N. Romashev, V. N. Kuznetsov// Phys. Metals Metallogr. 66, 328 (1988) (in Russian). [В. В. Сагарадзе, С. В. Морозов, В. А. Шабашов, Л. Н. Ромашев, Р. И. Кузнецов. ФММ. 66 (2), 328 (1988).]
12.
V. V. Sagaradze, V. A. Shabashov, T. M. Lapina, N. L. Pecherkina, V. P. Pilyugin. The Phys. Metals Metallogr. 78 (6), 619 (1994) (in Russian). [В. В. Сагарадзе, В. А. Шабашов, Т. М. Лапина, Н. Л. Печеркина, В. П. Пилюгин. ФММ. 78 (6), 49 (1994).]
13.
V. V. Sagaradze, V. A. Shabashov. Phys. Metals Metallogr. 112 (2), 146 (2011) (in Russian). [В. В. Сагарадзе, В. А. Шабашов. ФММ. 112 (2), 155 (2011)].
14.
O. I. Gorbatova, Yu. N. Gornostyrev, P. A. Korzhavyi and A. V. Ruban. Phys. Metals Metallogr. 117 (13), 1293 (2016).
15.
I. K. Razumov, Yu. N. Gornostyrev and M. I. Katsnelson. Phys. Metals Metallogr. 118 (4), 362 (2017).
16.
А. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V. I. Kopylov. Acta Mater. 50, 1639 (2002). DOI: 10.1016/S1359-6454(01)00437-2
17.
A. Almazouzi, M.‑P. Macht, V. Naundorf, G. Neumann. Phys. stat. sol. (a). 167, 15 (1998). DOI: 10.1002/(SICI)1521-396X(199805)167:1<15::AID-PSSA15>3.0. CO;2-8
18.
D. J. Chakrabarti, D. E. Laughlin. The Cr-Cu (Chromium-Copper) System Bulletin of Alloy Phase Diagram. 5 (1),59 (1984). DOI: 10.1007/BF02868543
19.
S. N. Faizova, G. I. Raab, N. G. Zaripov, D. A. Alsenov, I. A. Faizov. Phys. Mezomech. 18 (4), 87 (2015) (in Russian). [С. Н. Фаизова, Г. И. Рааб, Н. Г. Зарипов, Д. А. Аксенов, И. А. Фаизов. Физическая мезомеханика. 18 (4), 87 (2015).]
20.
V. S. Zolotarevsky. Mechanical properties of metals. M. MISIS (1998) 400 p. (in Russian). [В. С. Золоторевский. Механические свойства металлов. М. МИСИС (1998) 400 c.]
21.
A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa and V. I. Kopylov. Mater Transactions. 45 (7), 2187 (2004). DOI: 10.2320/matertrans.45.2187
22.
A. Chbihi, X. Sauvage, D. Blavette. Acta Mat. 60 (11), 4575 (2012). DOI: 10.1016/j.actamat.2012.01.038