Patterns of changes in acoustic emission parameters during laser impact on superhard materials

M.P. Kozochkin, M.S. Migranov, S.V. Fedorov, A.S. Gusev ORCID logo , E.A. Ostrikov, E.S. Mustafaev show affiliations and emails
Received 26 August 2025; Accepted 25 November 2025;
Citation: M.P. Kozochkin, M.S. Migranov, S.V. Fedorov, A.S. Gusev, E.A. Ostrikov, E.S. Mustafaev. Patterns of changes in acoustic emission parameters during laser impact on superhard materials. Lett. Mater., 2025, 15(4) 394-400
BibTex   https://doi.org/10.48612/letters/2025-4-394-400

Abstract

The article investigates and substantiates the feasibility of using acoustic emission (AE) for monitoring and diagnosing laser processing of ultra-hard materials. Using laser probing as an example, it is demonstrated that AE parameters carry valuable information about process efficiency, material properties, and underlying physical phenomena.The study involved experimental investigations into the correlations between acoustic emission (AE) signal parameters and the processing regimes of laser, electro-discharge, and mechanical machining. Specifically, it presents the results of analyzing how AE signal parameters correlate with variations in laser pulse power and duration, as well as with processing productivity and the quality of the resulting surface. It is demonstrated that a change in the power density of the impact similarly affects the AE signal spectrum across different technologies, allowing this parameter to be used for assessing process state. Particular attention is paid to laser material probing, where AE signals reflect such phenomena as vapor-plasma plume formation, the energy of internal bonds in the material structure, and the self-focusing of laser radiation. The paper presents graphs illustrating the correlations between AE parameters and laser processing regimes for various materials. The study provides insights into the relationship between AE parameters and the process shifting towards either an increased proportion of melt in the removed material or towards its vaporization. This offers prospects for implementing real-time processing quality monitoring. The results demonstrate that AE parameters can serve as indicators of processing productivity, surface quality, and material properties. This opens up prospects for the industrial application of the method, for instance, in the real-time monitoring of processes involving concentrated energy flows, assessing the properties of new alloys, and optimizing technological regimes. The presented data indicate that AE parameters can be a tool for gaining deeper insights into the complex phenomena accompanying the impact of concentrated energy flows on materials.

References (23)

1. N. A. Semashko, V. I. Shport, B. N. Mar’in, Acoustic Emission in Experimental Materials Science, Moscow, Mashinostroenie, 2002, 239 p. (in Russian) [Н. А. Семашко, В. И. Шпорт, Б. Н. Марьин, Акустическая эмиссия в экспериментальном материаловедении, Москва, Машиностроение, 2002, 239 с.].
2. M. M. Kristal, A. Yu. Vinogradov, E. D. Merson, A. A. Eremichev, D. L. Merson, Effect of strain rate on acoustic emission during hydrogen assisted cracking in high carbon steel, Materials Science and Engineering: A. 550 (2012) 408 - 417.
3. V. M. Goritskii, Diagnostics of Metals, Moscow, Metallurgizdat, 2004, 402 p. (in Russian) [В. М. Горицкий, Диагностика металлов, Москва, Металлургиздат, 2004, 402 с.].
4. V. I. Ivanov, V. A. Barat, Acoustic-Emission Diagnostics. Moscow, Spektr, 2017, 362 p. (in Russian) [В. И. Иванов, В. А. Барат, Акустико-эмиссионная диагностика, Москва, Спектр, 2017, 362 с.].
5. V. M. Pestrikov, E. M. Morozov, Fracture Mechanics of Solids, St. Petersburg, Professiya, 2002, 300 p. (in Russian) [В. М. Пестриков, Е. М. Морозов, Механика разрушения твердых тел. Санкт-Петербург, Профессия, 2002, 300 с.].
6. V. G. Kharebov, A. V. Zhukov, A. V. Kuz’min, Practical evaluation of the acoustic emission method on process pipelines, In the World of Non-Destructive Testing 3 (41) (2014) 24 - 26. (in Russian) [В. Г. Харебов, А. В., Кузьмин А. В. Жуков, Практическая оценка метода акустической эмиссии на технологических газопроводах, В мире неразрушающего контроля 3 (41) (2014) 24 - 26.].
8. D. Kouprianoff, I. Yadroitsava, A. Plessis et al., Monitoring of Laser Powder Bed Fusion by Acoustic Emission: Investigation of Single Tracks and Layers, Front. Mech. Eng. 7 (2021) 1 - 17.
13. S. D. Zotov, A. A. Kuznetsov, A. A. Lebedev, E. N. Lotkova, Non-reproducibility of acoustic emission during cyclic irradiation of solids by an infrared laser pulse, Short Commun. Phys. Lebedev Phys. Inst. (2017) 3 - 9. (in Russian) [С. Д. Зотов, А. А. Кузнецов, А. А. Лебедев, Э. Н. Лоткова, Невоспроизводимость акустической эмиссии при циклическом облучении твердых тел инфракрасным лазерным импульсом. Краткие сообщения по физике ФИАН (2017) 3 - 9.].
14. M. P. Kozochkin, S. V. Fedorov, M. Sh. Migranov, E. A. Ostrikov, A. S. Gusev, Relationships between parameters of acoustic emission signals and features of material processing, Control. Diagn. 28, 10 (2025) 25 - 40. (in Russian) [М. П. Козочкин, С. В. Федоров, М. Ш. Мигранов, Е. А. Остриков, А. С. Гусев, Связи параметров сигналов акустической эмиссии с особенностями обработки материалов, Контроль. Диагностика 28, 10 (2025) 25 - 40.].
15. G. A. Baglyuk, Yu. G. Bezymyanny, O. V. Tal’ko, Display of properties and structural features of powder hot-stamped composites based on the analysis of acoustic fields, in: Technical Acoustics: Developments, Problems, Prospects. Proc. Int. Sci.-Pract. Conf. (Vitebsk, May 2021), Vitebsk State Technological University, Vitebsk, 2021, pp. 69 - 71. (in Russian) [Г. А. Баглюк, Ю. Г. Безымянный, О. В. Талько, Отображение свойств и особенностей структуры порошковых горячештампованных композитов по результатам анализа акустических полей, Материалы МНК «Техническая акустика: разработки, проблемы, перспективы», Витебск - май 2021, с. 69 - 71.].
17. V. K. Merinov, V. V. Kozhushko, V. P. Sergienko, A. Ya. Grigoriev, Laser opto-acoustic diagnostics of metal-polymer composite joints, in: Technical Acoustics: Developments, Problems, Prospects. Proc. Int. Sci.-Pract. Conf. (Vitebsk, May 2021), Vitebsk State Technological University, Vitebsk, 2021, pp. 56 - 58. (in Russian) [В. К. Меринов, В. В. Кожушко, В. П. Сергиенко, А. Я. Григорьев, Лазерная оптико-акустическая диагностика соединений металлополимерных композитов, Материалы МНК «Техническая акустика: разработки, проблемы, перспективы», Витебск - май 2021, с. 56 - 58.].
20. N. V. Vinogradova, M. A. Prokofiev, Relationship Between Latent Deformation Energy and Technological Conditions of Mechanical Processing, Strengthening Technol. Coat. 1 (2011) 3 - 7. (in Russian) [Н. В. Виноградова, М. А. Прокофьев, Взаимосвязь скрытой энергии деформации с технологическими условиями механической обработки, Упрочняющие технологии и покрытия 1 (2011) 3 - 7.].
21. O. G. Kosareva, N. A. Panov, Physics of Laser Filaments, Moscow University Press, Moscow, 2021, 153 p. (in Russian) [О. Г. Косарева, Н. А. Панов, Физика лазерных филаментов, Издательство Московского университета, Москва, 2021, 153 с.].

Funding

1. Russian Science Foundation - №. 22–19-00670-P, https://rscf.ru/en/project/22-19-00670/