Superplastic pressure forming of a metal sheet into a long die with an isosceles trapezoid cross section

A.V. Gordienko ORCID logo , T.A. Beliakova ORCID logo show affiliations and emails
Received 20 March 2025; Accepted 24 July 2025;
Citation: A.V. Gordienko, T.A. Beliakova. Superplastic pressure forming of a metal sheet into a long die with an isosceles trapezoid cross section. Lett. Mater., 2025, 15(3) 184-191
BibTex   https://doi.org/10.48612/letters/2025-3-184-191

Abstract

Forming scheme for a given pressure-time function. The colors on the right graph indicate different points of the shell.Superplastic deformation of thin sheets is widely used in aerospace, automotive and other industries. In this paper, a mathematical model of plane strain superplastic pressure forming of a sheet specimen into a die is proposed. A die under consideration has a shape of a long box with an isosceles trapezoid cross section, but the model can be generalized for more complex die shapes. It is assumed that sticking happens between a shell and a die and thickness remains unchanged once contact occurs. The process of forming was divided into different phases, which are determined by the die geometry. For each phase, ordinary differential equations for thickness were derived along with the initial conditions. Solutions of obtained ODEs allow estimating the shell thickness at any point of a specimen as a function of coordinate along walls of the die and to determine the duration of each superplastic pressure forming phase for a given pressure-time function. Norton’s power law was used as a constitutive equation. Due to the simplicity of Norton`s law it is possible to solve some of ODEs analytically. The proposed model can be used with other types of constitutive relations, in particular with relations that include microstructure parameters etc. The superplastic forming of a Ti-6Al-4V titanium alloy sheet for the piecewise pressure-time function has been modelled. Some special cases of die geometry are analyzed.

References (34)

2. R. A. Vasin, F. U. Enikeev, Introduction to the mechanics of superplasticity. Part I, Gilem, Ufa, 2001, 280 p. (in Russian) [Р. А. Васин, Ф. У. Еникеев, Введение в механику сверхпластичности. Т1, Гилем, Уфа, 2001, 280 с.].
3. N. N. Malinin, Creep in metal working, Mashinostroenie, Moscow, 1986, 222 p. (in Russian) [Н. Н. Малинин, Ползучесть в обработке металлов, Машиностроение, Москва, 1986, 222 с.].
16. G. R. Murzina, V. R. Ganieva, F. U. Enikeev, O. P. Tulupova, Software for calculating technological and geometric characteristics of the superplastic forming process, Int. Journal of Open Inf. Tech. 12, 11 (2024) 35 - 40. (in Russian) [Г. Р. Мурзина, В. Р. Ганиева, Ф. У. Еникеев, О. П. Тулупова, Программное средство для расчета технологических и геометрических характеристик процесса сверхпластической формовки, Int. Journal of Open Inf. Tech. 12, 11 (2024) 35 - 40.].
25. A. Kh. Akhunova, S. V. Dmitriev, A. A. Kruglov, R. V. Safiullin, Superplastic forming of sheet into wedge die, Russian metallurgy (Metally) (2010) 9 38 - 41.
27. A. R. Goronkova, F. U. Enikeev, A. A. Kruglov, Perzyna's model use for the modeling processes of superplastic forming of rectangular membranes, Kuznechno-shtampovochnoe proizvodstvo, Obrabotka materialov davleniem 9 (2016) 11-18. (in Russian) [А. Р. Горонкова, Ф. У. Еникеев, А. А. Круглов, Применение модели Пэжины для моделирования процесса сверхпластической формовки прямоугольной мембраны, Кузнечно-штамповочное производство, Обработка материалов давлением 9 (2016) 11-18.].
28. A. A. Kruglov, F. U. Enikeev, Finite element modeling of the process of superplastic forming of a rectangular membrane, Kuznechno-shtampovochnoe proizvodstvo, Obrabotka materialov davleniem 2 (2019) 31 - 40. (in Russian) [А. А. Круглов, Ф. У. Еникеев, Конечноэлементное моделирование процесса сверхпластической формовки прямоугольной мембраны, Кузнечно-штамповочное производство, Обработка материалов давлением 2 (2019) 31- 40.].

Funding

1. Interdisciplinary Scientific and Educational School of Moscow University "Fundamental and Applied Space Research" - 23-Ш01-01