Thermo-mechanical properties of random ternary alloy V-5Cr-5Ti

H.S. M. Phuong, N.T. H. Trung ORCID logo , M.D. Starostenkov show affiliations and emails
Received 07 November 2024; Accepted 25 December 2024;
Citation: H.S. M. Phuong, N.T. H. Trung, M.D. Starostenkov. Thermo-mechanical properties of random ternary alloy V-5Cr-5Ti. Lett. Mater., 2025, 15(1) 36-42
BibTex   https://doi.org/10.48612/letters/2025-1-36-42

Abstract

Density profile of the simulation box along the x-axis, illustrating the shift of the solid-liquid interface toward the solid region at temperatures above the melting point. The top image shows the original simulation box of the V-5Cr-5Ti alloy, while the bottom image displays the same simulation box with structure types identified using Common Neighbor Analysis.Vanadium alloys are recognized as leading candidate materials for fusion applications, particularly in first wall and ceiling structures. As a structural material for Generation IV and future fusion reactors, the vanadium-rich V-5Cr-5Ti alloy is expected to operate at high temperatures ranging from 500°C to 1000°C and withstand damage levels of up to 150 – 200 dpa, depending on the characteristics of alloying elements and the neutron spectrum. In this paper, we investigate several thermal and mechanical properties of V-5Cr-5Ti ternary alloy, including the equilibrium melting point (Tm), thermal conductivity (k), volumetric thermal expansion coefficient (α), specific heat capacity (Cp) at constant pressure, self-diffusion, elastic constants, and tensile deformation. The results indicate that the V-5Cr-5Ti alloy has a relatively high melting point, excellent thermal conductivity, high tensile strength, and low thermal expansion. These properties confer a high heat load capacity, making this alloy one of the most promising materials for the first wall and blanket structures of next-generation fusion reactors.

References (43)

33. L.-P. Zhou, B.-X. Wang, X.-F. Peng, X.-Z. Du, Y.-P. Yang, On the specific heat capacity of CuO nanofluid, Adv. Mech. Eng. 2 (2015) 172085.
34. M. Zábranský, V. Růžička, E. S. Domalski, Heat capacity of liquids: critical review and recommended values. Supplement I, J. Phys. Chem. Ref. Data 30, 5 (2001) 1199 -1689.
35. Y. U. Paulechka, Heat capacity of room-temperature ionic liquids: a critical review, J. Phys. Chem. Ref. Data 39, 3 (2010) 033108.
36. A. Einstein, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Ann. Phys. 327, 1 (1907) 180 -190.
37. M. Pyda, R. C. Bopp, B. Wunderlich, Heat capacity of poly (lactic acid), J. Chem. Therm. 36, 9 (2004) 731- 742.
38. K. S. Pitzer, The molecular structure and thermodynamics of propane the vibration frequencies, barrier to internal rotation, entropy, and heat capacity, J. Chem. Phys. 12, 7 (1944) 310 - 314.
40. A. Rajabpour et al., Molecular dynamics simulation of the specific heat capacity of water-Cu nanofluids, International Nano Letters 3 (2013) 58.
42. M. Plucinski, Limitations and extensions of the Makishima Mackenzie model, Dalhousie University, 2014.
43. D. T. Bolef, J. De Klerk, Anomalies in the elastic constants and thermal expansion of chromium single crystals, Physical Review 129, 3 (1963) 1063.