Abstract
Nickel-based heat-resistant superalloys are unique materials that can operate at high temperatures. They are used for example, to make parts such as disks, shafts or blades. Superalloys are considered as “non-weldable”. Therefore, the task to obtain solid-state joint of such materials is relevant. This work is devoted to the study of the microstructure and properties of the solid-state joints in two combinations: VKNA-25//EP741NP and EK61//EP741NP. All the superalloys are heat-resistant: the EK61 is a wrought superalloy and the EP741NP is a powder one, both having different type of hardening phases, and the VKNA-25 is a cast monocrystalline intermetallic alloy based on Ni3Al. The solid-state joints were obtained by pressure welding under superplasticity conditions in a vacuum of P = 5 ·10−2 Pa. For the VKNA-25//EP741NP combination, pressure welding was carried out under EP741NP superplastic conditions at 1125°C. And for the EK61//EP741NP combination with stepwise temperature rise in 5 steps: 850°C → 925°C → 975°C →1025°C →1075°C →1100°C, which corresponds to the temperature (850 – 950°C) of the superplasticity conditions for the EK61 superalloy with ultrafine-grained microstructure and to the lower temperature limit (1000°C) of superplasticity for the EP741NP superalloy with fine-grained microstructure. The strength of the welded specimens was evaluated by mechanical tensile testing at room temperature. For the combination of VKNA-25//EP741NP, the microstructure both alloys remain. For the EK61//EP741NP combination, the microstructure of the EK61 superalloy becomes coarse grained (up to 50 μm) and microstructure of the EP741NP remains the fine-grained type. In both cases, a transition diffusion zone is formed between the dissimilar nickel-based superalloys; its thickness after pressure welding is 14 μm for the VKNA-25//EP741NP and it is 28 μm for the EK61//EP741NP. The ultimate strength of welded specimens for the combination of EK61//EP741NP was 620 MPa, and for the combination of EP741NP//VKNA-25 was 1080 MPa.
References (25)
2. Ch. T. Sims (Eds), Superalloys II: heat-resistant materials for aerospace and industrial applications, in 2 books, Moscow, Metallurgiya, 1995, 384 p. (in Russian) [Ч. Т. Симс (ред.), Суперсплавы II: жаропрочные материалы для аэрокосмических и промышленных установок, В 2-х книгах, Москва, Металлургия, 1995, 384 с.].
3.
N. Zaichuk, S. Shymchuk, M. Pivnytskyi, Y. Shymchuk, J. Szczot, An Increase in the Performance of Parts Made of Heat-Resistant Steels and Alloys, in: V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, M. Edl (Eds.), Advances in Design, Simulation and Manufacturing VI. DSMIE 2023. Lecture Notes in Mechanical Engineering, Springer, Cham, 2023, pp. 282 - 2914.
B. Swain, P. Mallick, S. Patel, R. Roshan, S. S. Mohapatra, S. Bhuyan, M. Priyadarshini, B. Behera, S. Samal, A. Behera, Failure analysis and materials development of gas turbine blades, Materials Today: Proceedings 33 (2020) 5143 - 51465.
X. Yang, T. Meng, Q. Chu, Y. Su, Z. Guo, R. Xu, W. Fan, T. Ma, W. Li, A review of linear friction welding of Ni-based superalloys, Int. J. Miner. Metall. Mater. 31 (2024) 1382 -13917.
E. Saly, P. Villechaise, D. Mellier, P. Sallot, A. Caradec, J. Cormier, Spark Plasma Sintering of Nickel-Based Superalloys: A New Route to Produce Dual-Alloy Turbine Disks, in: J. Cormier, I. Edmonds, S. Forsik, P. Kontis, C. O’Connell, T. Smith, A. Suzuki, S. Tin, J. Zhang Superalloys The Minerals, Metals & Materials Series. Springer, Cham, 2024, pp. 242-25210.
D. A. Baranov, S. S. Zhatkin, V. I. Nikitin, V. B. Deev, K. V. Nikitin, A. Yu. Barinov, D. M. Yudin, Ensuring the strength of welded joints in laser welding of EP693 heat-resistant dispersion-hardening nickel alloy, Izvestiya. Non-Ferrous Metallurgy. 3 (2021) 57 - 65. (in Russian) [Д. А. Баранов, С. С. Жаткин, В. И. Никитин, В. Б. Деев, К. В. Никитин, А. Ю. Баринов, Д. М. Юдин, Обеспечение прочности сварных соединений при лазерной сварке жаропрочного дисперсионно-твердеющего никелевого сплава ЭП693, Izvestiya Vuzov. Tsvetnaya Metallurgiya 3 (2021) 57 - 65.]13. V. I. Lukin, V. G. Kovalchuk, M. L. Samorukov, Yu. M. Gridnev, I. P. Zhegina, L. V. Kotelnikova, Study of the influence of friction welding and heat treatment parameters on the quality of welded joints of heat-resistant deformable nickel alloys, Welding production 4 (2011). (in Russian) [В. И. Лукин, В. Г. Ковальчук, М. Л. Саморуков, Ю. М. Гриднев, И. П. Жегина, Л. В. Котельникова, Исследование влияния параметров сварки трением и термической обработки на качество сварных соединений жаропрочных деформируемых никелевых сплавов Сварочное Производство 4 (2011).].
19.
E. V. Galieva, V. A. Valitov, E. Y. Klassman, A. A. Ganeev, R. R. Gabbasov, E. M. Stepukhov, I. I. Khafizov, Mechanical properties and weldability of powder EP741NP nickel-based superalloy with an ultrafine-grained mixed type microstructure, Lett. Mater. 13, 4s (2023) 493 - 498, Webpage https://lettersonmaterials.com/ru/Readers/Article.aspx?aid=4251624.
A. A. Ganeev, V. A. Valitov, M. I. Nagimov, V. M. Imayev, Effect of hot forging on the microstructure and superplastic properties of the powder nickel base superalloy EP741NP, Lett. Mater. 10 (2020) 100 -105. (in Russian) [А. А. Ганеев, В. А. Валитов, М. И. Нагимов, В. М. Имаев, Влияние деформационно-термической обработки на микроструктуру и сверхпластические свойства порошкового никелевого сплава ЭП741НП, Письма о материалах 10 (2020) 100 -105.]25. A. A. Tagirova, E. V. Galieva, V. A. Valitov, E. Y. Klassman, Study of microstructure and microhardness in the solid-state joint zone of nickel alloys EK61 and EP741NP, in: Current strength problems. Collection of Abstracts of International Conference (Ekaterinburg, Russia 2 - 5 April 2024), Urals State University of Mines, Ekaterinburg, Russia, 2024, р. 163 -165. (in Russian) [А. А. Тагирова, Э. В. Галиева, В. А. Валитов, Е. Ю. Классман, Исследование микроструктуры и микротвердости в зоне твердофазного соединения никелевых сплавов ЭК61 и ЭП741НП, Актуальные проблемы прочности. Сборник тезисов Международной конференции, Уральский государственный горный университет, Екатеринбург, Россия, 2024, с. 163 -165.].
Funding
1. The State assignment of the IMSP RAS - No. 1240022900007-9
2. The Grant of the Republic of Bashkortostan - Agreement No. 14.08.2023