Stress tensor in various structural states of the Mg-Zn-Zr-Ce alloy formed by severe plastic deformation

M.A. Khimich ORCID logo , N.A. Luginin, A.I. Tolmachev, K.A. Prosolov, Y.P. Sharkeev show affiliations and emails
Received 12 August 2024; Accepted 26 November 2024;
Citation: M.A. Khimich, N.A. Luginin, A.I. Tolmachev, K.A. Prosolov, Y.P. Sharkeev. Stress tensor in various structural states of the Mg-Zn-Zr-Ce alloy formed by severe plastic deformation. Lett. Mater., 2024, 14(4) 446-452
BibTex   https://doi.org/10.48612/letters/2024-4-446-452

Abstract

In this work, residual stresses in coarse-grained, fine-grained and ultrafine-grained states of the deformable alloy MA-20 were estimated using methods of X-ray diffraction analysisThe medium-strength, deformable magnesium alloy MA-20 has wide applications in aerospace and potential use in medical implants due to its low density, acceptable strength, and bioresorbability. This study investigates the alloy in coarse-grained (CG), fine-grained (FG), and ultrafine-grained (UFG) states. Severe plastic deformation (SPD) effectively refines grain size and modifies residual stress as well as forms new complex of physical and mechanical properties in the alloy. Results show significant grain refinement with SPD, decreasing average grain size from 27 ±10 μm in the CG state to about 1 μm in the UFG state. SPD led to grain elongation along the (0002) planes in the FG state and formation of uniaxial grains in the UFG state due to the structure rearrangement. Principal stress for the (101−0) planes did not significantly change, while for the (0002) planes, stress decreased in the FG state and increased in the UFG state by 23 %. (112−0) planes also did not show significant changes of residual stress as well as (101−1) planes showed virtually unchanged total stress across all states. Such behavior is accompanied by growth of defects density and microstrains within the alloy as well as by active twinning process. Therefore, SPD is an effective technique that allows improvements of mechanical properties and suitability for biomedical applications of MA-20 alloy.

References (32)

2. GOST 1457-76 Wrought Magnesium Alloys. Grades. Introduced 01.01.1978. Moscow (1978) 4 p. (in Russian) [ГОСТ 14957-76 Сплавы магниевые деформируемые. Марки. Введен 01.01.1978. Москва, 1978, 4 с.].
12. E. F. Volkova, G. I. Morozova, I. V. Iskozhanova, Features of the structure and phase composition of magnesium alloy MA20, Metal Science and Heat Treatment of Metals 10 (2009) 12. (in Russian) [Е. Ф. Волкова, Г. И. Морозова, И. В. Исходжанова, Особенности структуры и фазового состава магниевого сплава МА20, Металловедение и термическая обработка металлов 10 (2009) 12.].
15. B. D. Cullity, S. R. Stock (Eds), Elements of X-ray diffraction, Pearson Education Limited, 2014, 654 p.
16. GOSTR 57172-2016 Technical diagnostics. Determination of surface residual stresses by method of instrumental indentation. General requirements. Introduced 01.01.2018. Moscow, Standartinform (2016) 12 p. (in Russian) [ГОСТР 57172-2016 Техническая диагностика. Определение поверхностных остаточных напряжений методом инструментального индентирования. Общие требования. Введен 01.01.2018. М., Стандартинформ, 2016, 12 с.].
17. N. V. Kazantseva, A. A. Isupova, Y. N. Koemec, L. Y. Egorova, A. P. Nichipuruk, Theoretical and experimental study of residual internal stresses in 09G2C steel samples formed with laser 3D-printer, Additive technologies: present and future, Thesis of VII International conference, VIAM, Moscow (2021) p. 329. (in Russian) [Н. В. Казанцева, А. А. Исупова, Ю. Н. Коэмец, Л. Ю. Егорова, А. П. Ничипурук, Теоретическое и экспериментальное исследование остаточных внутренних напряжений в образцах стали 09Г2С, полученных с помощью лазерного 3D-принтера, Аддитивные технологии: настоящее и будущее, Материалы VII Международной конференции, ВИАМ, Москва (2021) с. 329.].

Funding

1. Russian Science Foundation - 23-13-00359