Microstructure and strength of solid-state joints of dissimilar nickel-based alloys

E.V. Galieva, E.Y. Klassman, V.A. Valitov, R.R. Gabbasov, A.A. Tagirova, E.M. Stepukhov show affiliations and emails
Received 09 August 2024; Accepted 24 October 2024;
Citation: E.V. Galieva, E.Y. Klassman, V.A. Valitov, R.R. Gabbasov, A.A. Tagirova, E.M. Stepukhov. Microstructure and strength of solid-state joints of dissimilar nickel-based alloys. Lett. Mater., 2024, 14(4) 453-459
BibTex   https://doi.org/10.48612/letters/2024-4-453-459

Abstract

Pressure welding scheme and mechanical properties of welded samples from different combinations of superalloys based on nickel.Solid-state joining of metallic materials is a promising technological method that allows joining various materials. It is especially important for hard to deform nickel-based alloys (superalloys). The paper presents the results of pressure welding experiments using superplastic deformation of dissimilar superalloys in different combinations and temperatures: EK61//EP975 and EK61//EP741NP at 850°C, EP741NP//VKNA-25 and EP975//VKNA-1V at 1125°C. It was shown that in all cases the solid-state joint zone was a transition diffusion zone. The width of solid-state joint obtained at 850°C is about 10 µm, and for the case of 1125°C it is about 14 –18 µm. In all joints no brittle particles are observed. In combinations EK61//EP975 and EK61//EP741NP at 850°C, and EP741NP//VKNA-25 at 1125°C, there are no significant microstructure changes in the solid-state joint. As for EP975//VKNA-1V at 1125°C, a γ'-layer about 10 –12 µm in thickness is formed in solid-state joint zone in VKNA-1V alloy side. In all cases an interface between joined alloys is observed. The strength of solid-state joints was evaluated by mechanical tensile tests at room temperature. The strength limit was σUTS =1170 MPa for the pair of EK61//EP975, σUTS = 604 MPa for EK61//EP741NP, σUTS = 500 MPa for EP975//VKNA-1V, and σUTS =1080 MPa for EP741NP//VKNA-25. The above results indicate that pressure welding using the effect of low-temperature superplastic deformation is a promising method for obtaining high-quality solid-state joint from nickel-based superalloys.

References (30)

1. A. V. Logunov, Heat-resistant nickel superalloys for blades and disks of gas turbines, Moscow, LLC Publishing House Gas Turbine Technologies, 2017, 854 p. (in Russian) [А. В. Логунов, Жаропрочные никелевые сплавы для лопаток и дисков газовых турбин, Москва, ООО «Издательский дом «Газотурбинные технологии»», 2017, 854 с.].
3. Ch. T. Sims (Ed), Superalloys II: heat-resistant materials for aerospace and industrial applications, In 2 books, Moscow, Metallurgy, 1995, 384 p. (in Russian) [Ч. Т. Симс, Под ред., Суперсплавы II: жаропрочные материалы для аэрокосмических и промышленных установок, В 2-х книгах, Москва, Металлургия, 1995, 384 с.].
4. S. T. Kishkin, Creation, research and application of heat-resistant superalloys: Selected works (To the 100th anniversary of his birth), Moscow, Nauka, 2006, 407 p. (in Russian) [С. Т. Кишкин, Создание, исследование и применение жаропрочных сплавов: Избранные труды (К 100-летию со дня рождения), Москва, Наука, 2006, 407 с.].
5. G. S. Garibov, N. M. Grits, V. I. Dobatkin and pellet metallurgy of heat-resistant nickel superalloys, Technology of light superalloys 2 (2015) 34 - 39. (in Russian) [Г. С. Гарибов, Н. М. Гриц, В. И. Добаткин и металлургия гранул жаропрочных никелевых сплавов, Технология легких сплавов 2 (2015) 34 - 39.].
6. R. M. Galeev, O. R. Valiakhmetov, A. F. Aletdinov, Diffusion welding of heat-resistant nickel superalloys VV751P and VZh175-ID, in: Ultrafine Grained and Nanostructured Materials. Collection of Abstracts of Open-School Conference of CIS Countries (Ufa, Russia 1- 6 October 2018), Bashkir State University, Ufa, Russia, 2018, р. 96. (in Russian) [Р. М. Галеев, О. Р. Валиахметов, А. Ф. Алетдинов, Диффузионная сварка жаропрочных никелевых сплавов ВВ751П И ВЖ175-ИД, Ультрамелкозернистые и наноструктурные материалы. Сборник тезисов Открытой школы-конференции стран СНГ, БашГУ, Уфа, Россия, 2018, с. 96.].
11. V. I. Lukin, V. G. Kovalchuk, M. L. Samorukov, Yu. M. Gridnev, I. P. Zhegina, L. V. Kotelnikova, Study of the influence of friction welding parameters and heat treatment on the quality of welded joints of heat-resistant wrought nickel superalloys, Welding International 4 (2011) 26 - 30. (in Russian) [В. И. Лукин, В. Г. Ковальчук, М. Л. Саморуков, Ю. М. Гриднев, И. П. Жегина, Л. В. Котельникова, Исследование влияния параметров сварки трением и термической обработки на качество сварных соединений жаропрочных деформируемых никелевых сплавов, Сварочное производство 4 (2011) 26 - 30.].
15. V. A. Valitov, Sh. H. Mukhtarov, Yu. A. Raskulova, Formation of a nanocrystalline structure upon severe thermomechanical treatment and its effect on the superplastic properties of a nickel alloy with nonisomorphic second-phase precipitates, Phys. Metals Metallogr. 102 (2006) 105 -113. (in Russian) [В. А. Валитов, Ш. Х. Мухтаров, Ю. А. Раскулова, Формирование нанокристаллической структуры при интенсивной деформационно-термической обработке и ее влияние на сверхпластические свойства никелевого сплава с неизоморфными выделениями торой фазы, ФММ 102 (2006) 105 - 113.].
30. K. B. Povarova, V. P. Buntushkin, N. K. Kazanskaia, A. A. Drozdov, O. A. Bazyleva, Especially light heat resistant nano structured alloys on basis of Ni3Al for aviation propulsion engineering and power machine building, Materials science questions 2 (2023) 85 - 93. (in Russian) [К. Б. Поварова, В. П. Бунтушкин, Н. К. Казанская, А. А. Дроздов, О. А. Базылева, Особолегкие жаропрочные наноструктурированные сплавы на основе Ni3Al для авиационного двигателестроения и энергетического машиностроения, Вопросы материаловедения 2 (2023) 85 - 93.].

Funding

1. The State assignment of the IMSP RAS - # 124022900007-9
2. The scholarship of the President of the Russian Federation - SP 4002.2022.-1
3. The Grant of the Republic of Bashkortostan - Agreement #. 14.08.2023
4. State assignment of IMSP RAS - 124022900106-9