The features of the microemulsion structure changes under the nonhomogeneous alternating electric field impact

A.I. Mullayanov, A.A. Musin, V.I. Valiullina ORCID logo , L.A. Kovaleva show affiliations and emails
Received 28 November 2023; Accepted 21 February 2024;
Citation: A.I. Mullayanov , A.A. Musin, V.I. Valiullina, L.A. Kovaleva. The features of the microemulsion structure changes under the nonhomogeneous alternating electric field impact. Lett. Mater., 2024, 14(1) 57-61
BibTex   https://doi.org/10.48612/letters/2024-1-57-61

Abstract

There is an increase in coalescence efficiency with increasing droplet concentration. This is due to the fact that an increase in the concentration of drops leads to a decrease in the distribution of the distance between the drops of the emulsion, which favorably affects the process of convergence of the drops.This paper investigates the effect of a nonhomogeneous electric field on an emulsion system. An inhomogeneity of the electric field is created in the experimental cell intentionally with a help of a special geometry of the microelectrode system, which is made by photolithography technology on the surface of an electrically conductive glass. The main goal of this work is to study the dynamics of merging of water droplets with varying frequency, electric field voltage, and droplet concentration. Images of the microstructure of the emulsion before and after exposure to the electric field were obtained. The diameters, number and concentration of droplets in the interelectrode region are determined. It was found that the droplets begin to move in the region of the interelectrode space, where they collide and merge, this leads to the formation of larger droplets. It was found that the main changes in the microstructure of the emulsion occur in fractions of a second, regardless of the frequency and voltage of the applied field. Increasing the voltage and frequency of the applied electric field enhances the coalescence effect. The change in the concentration of the droplets led to an increase in the efficiency of joining the droplets of the emulsion.

References (20)

1. S. A. Raya, I.M. Saaid, A.A. Ahmed, A. A. Umar. J. of Petrol. Expl. and Prod. Tech. 10, 1711 (2020).
2. M. A. Saad, M. Kamil, N. H. Abdurahman, R. M. Yunus, O. I. Awad. Processes. 7 (7), 470 (2019).
3. Y. Tian, J. Zhou, C. He, L. He, X. Li, H. Sui. Processes. 10 (4), 738 (2022).
4. V. I. Valliullina, A. I. Mullayanov, A. A. Musin, V. N. Kireev, L. A. Kovaleva. J. Phys.: Conf. Ser. 1675, 012025 (2020).
5. J. S. Eow, M. Ghadiri, A. O. Sharif, T. J. Williams. Chem. Eng. J. 84 (3), 173 (2001).
6. Yu. S. Zamula, M. O. Afanasyev, E. S. Batirshin. Letters on Materials. 13 (4), 286 (2023).
7. M. Mousavichoubeh, M. Shariaty-Niassar, M. Ghadiri. Chem. Eng. Sci. 66 (21), 5330 (2011).
8. R. Zolfaghari, A. Fakhru’l-Razi, L. C. Abdullah, S. S. Elnashaie, A. Pendashteh. Sep. and Purif. Tech. 170, 377 (2016).
9. N. Li, Z. Sun, W. Liu, L. Wei, B. Li, Z. Qi, Z. Wang. J. of Molec. Liq. 333, 115995 (2021).
10. S. Luo, J. Schiffbauer, T. Luo. Phys. Chem. Chem. Phys., 18 (43), 29786 (2016).
11. A. R. Thiam, N. Bremond, J. Bibette. Phys. Rev. Let. 102 (18), 188304 (2009).
14. C. Guo, L. He. J. of Electrostat. 72 (6), 470 (2014).
15. T. Leary, M. Yeganeh, C. Maldarelli. ACS omega. 5 (13), 7348 (2020).
16. X. Luo, H. Yan, X. Huang, D. Yang, J. Wang, L. He. J. of Coll. and Interface. Sci. 505, 460 (2017).
17. M. Dudek, D. Fernandes, E. H. Herø, G. Øye. Col. and Surf. A: Physicochem. and Eng. Asp. 586, 124265 (2020).
18. A. V. Shmyrov, E. A. Mosheva, A. I. Mizev, R. R. Siraev. Bull. of the Perm Uni. Se.: Phys. 2, 22 (2023).
20. A. I. Mullayanov, R. Sh. Osipova, A. A. Musin, L. A. Kovaleva. Letters to ZhTF. 48 (1), 67 (2022).

Funding

1. Russian Science Foundation - 19-11-00298