Numerical study of the deformation behavior of a 2D chiral metamaterial

L.R. Akhmetshin ORCID logo , K.V. Iokhim, E.A. Kazantseva, I.Y. Smolin ORCID logo show affiliations and emails
Received 12 October 2023; Accepted 21 January 2024;
Citation: L.R. Akhmetshin, K.V. Iokhim, E.A. Kazantseva, I.Y. Smolin. Numerical study of the deformation behavior of a 2D chiral metamaterial. Lett. Mater., 2024, 14(1) 9-14
BibTex   https://doi.org/10.48612/letters/2024-1-9-14

Abstract

Artificially created materials - metamaterials, with a specially selected structure during the deformation process correspond to the behavior of structures. Metamaterials have unusual properties: additional degrees of freedom, negative Poisson's ratio.This paper presents a numerical study of a 2D tetrachiral metamaterial and the effect of unit cell parameters on its mechanical behavior. Finite element simulations are performed with independently varied geometric parameters of the chiral unit cell. Their effect on the effective elastic properties of a 2D metamaterial sample is analyzed. The highest strain estimated by the deviation of the metamaterial sample from the initial position is observed at an optimal ratio of ligament length to ring size. The variation of ligament width h is shown to have no effect on the mechanical behavior of the samples. It is found that a decrease in the volume of the base material in the metamaterial sample entails a decrease in the effective Young’s modulus. Parameters are identified which are responsible for the auxetic property of the metamaterial and determine the range of the effective Poisson’s ratio from −0.1 to 0.95.

References (37)

1. W. Wu, W. Hu, G. Qian, H. Liao, X. Xu, F. Berto. Mater. Des. 180, 107950 (2019).
2. L. Akhmetshin, K. Iokhim, E. Kazantseva, I. Smolin. Symmetry. 15 (1), 1 (2022).
3. M. Eidini. Extrem. Mech. Lett. 6, 96 (2016).
4. X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang, C. M. Spadaccini. Science. 344, 1373 (2014).
5. H. Zhu, J. Yi, M. Y. Li, J. Xiao, L. Zhang, C. W. Yang, R. A. Kaindl, L. J. Li, Y. Wang, X. Zhang. Science. 359, 579 (2018).
6. A. A. Vasiliev, I. S. Pavlov. Lett. Mater. 9 (1), 45 (2019). (in Russian) [А.А. Васильев, И.С. Павлов. Письма о материалах. 9 (1), 45 (2019).].
7. R. Lakes. Science. 235, 1038 (1987).
8. D. Prall, R. S. Lakes. Int. J. Mech. Sci. 39 (3), 305 (1997).
9. A. R. Sangsefidi, J. Kadkhodapour, A. P. Anaraki, S. H. Dibajian, S. Schmauder. Phys. Mesomech. 25, 568 (2022).
10. S. A. Muslov. Lett. Mater. 11 (1), 28 (2021). (in Russian) [С. А. Муслов. Письма о материалах. 11 (1), 28 (2021).].
11. R. Zhong, M. Fu, X. Chen, B. Zheng, L. Hu. Compos. Struct. 226, 111232 (2019).
12. B. B. Zheng, R. C. Zhong, X. Chen, M. H. Fu, L. L. Hu. Mater. Des. 171, 107700 (2019).
13. T. Frenzel, M. Kadic, M. Wegener. Science. 358, 1072 (2017).
14. A. Spadoni, M. Ruzzene. J. Mech. Phys. Solids. 60, 156 (2012).
15. A. Spadoni, M. Ruzzene, S. Gonella, F. Scarpa. Wave Motion. 46, 435 (2009).
16. H. Nassar, Y. Y. Chen, G. L. Huang. Phys. Rev. Lett. 124, 084301 (2020).
17. G. Carta, I. S. Jones, N. V. Movchan, A. B. Movchan. Proc. Math. Phys. Eng. Sci. 475, 20190313 (2019).
18. K. Zhang, Y. Su, P. Zhao, Z. Deng. Compos. Struct. 220, 114 (2019).
19. K. Zhang, P. Zhao, F. Hong, Y. Yu, Z. Deng. Smart. Mater. Struct. 29 (1), 015017 (2020).
20. N. Karathanasopoulos, J. F. Ganghoffer. Waves Random Complex Medium. 32 (4), 1694 (2022).
21. E. Baravelli, M. Ruzzene. J. Sound. Vib. 332, 6562 (2013).
22. F. Agnese, C. Remillat, F. Scarpa, C. Payne. Compos. Struct., 132, 215 (2015).
23. X. N. Liu, G. L. Huang, G. K. Hu. J. Mech. Phys. Solids. 60, 1907 (2012).
24. L. R. Akhmetshin. Nanosci. Technol. Int. J. 13 (2), 15 (2022).
25. P. Bettini, A. Airoldi, G. Sala, L. D. Landro, M. Ruzzene, A. Spadoni. Compos. B. Eng. 41, 133 (2010).
26. S. K. Bhullar. Adv. Mater. 2 (3), 42 (2013).
27. L. C. Wang, W. L. Song, D. Fang. ACS Appl. Mater. Interfaces. 11, 3450 (2019).
28. X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu. Prog. Mater. Sci. 94, 114 (2018).
29. Zh. Yuan, Zh. Cui, J. Ju. Mater. Des. 201, 109483 (2021).
30. F. Runkel, G. Ramstein, G. Molinari, A. F. Arrieta, P. Ermanni. J. Mech. Phys. Solids. 125, 145 (2019).
31. Zh. Wenjiao, R. Neville, Zh. Dayi, F. Scarpa, W. Lifeng, R. Lakes. Int. J. Solids Struct. 141-142, 254 (2018).
32. M. Sanami, N. Ravirala, K. Alderson, A. Alderson. Procedia Eng. 72, 453 (2014).
33. R. Zhong, M. Fu, Q. Yin, O. Xu, L. Hu. Int. J. Solids Struct. 169. 166 (2019).
34. A. Alomarah, S. H. Masood, I. Sbarski, B. Faisal, Zh. Gao, D. Ruan. Virtual Phys. Prototyp. 15, 1 (2020).
35. X. Lu, V. B. C. Tan, T. E. Tay. Comp. Struct. 241, 112067 (2020).
36. L. Mizzi, A. Spaggiari. Int. J. Solids Struct. 238, 111428 (2022).
37. L. R. Akhmetshin, I. Yu. Smolin. Nanosci. Technol. Int. J. 11 (3), 265 (2020).

Similar papers

Funding

1. Russian Science Foundation - Grant number 23-29-00402