Solid-state joining conditions of thin-walled ferritic-martensitic steel tubes to end plugs made by magnetic pulse welding

V.I. Krutikov ORCID logo , A.V. Spirin, E.Y. Zaytsev ORCID logo , S.V. Petrova, S.N. Paranin show affiliations and emails
Received 13 November 2023; Accepted 09 January 2024;
Citation: V.I. Krutikov, A.V. Spirin, E.Y. Zaytsev, S.V. Petrova, S.N. Paranin. Solid-state joining conditions of thin-walled ferritic-martensitic steel tubes to end plugs made by magnetic pulse welding. Lett. Mater., 2024, 14(1) 21-26
BibTex   https://doi.org/10.48612/letters/2024-1-21-26

Abstract

Joining of thin-walled tubes with plugs of ferritic-martensitic steels was carried out by magnetic pulse welding. The presence of molten layer on the joint interface depended on the materials and the impact conditions.The joints of tubes to plugs of STS410 / SUS430, Gr.91 / Gr.91, HT-9 / HT-9 were obtained using magnetic pulse welding (MPW). In MPW, a magnetic field is used to accelerate parts so that they are joined during a high-speed collision, where the contact spot runs at a specified condition. The outer diameter of the steel tubes was 7 to 9 mm, and the wall thickness was 0.5 to 0.6 mm. The MPW experiments were carried out using a 135 kJ / 36 kHz pulsed current generator loaded on a steel single-turn coil. The peak magnetic field reached 38 – 45 T. The impact and contact point velocities Vi and Vc were found from the analytical solution of the one-dimension motion equation of the tube wall. Optical microscopy and scanning electron microscopy with X-ray microanalysis were carried out. A molten interface layer of 2 – 30 μm thick with pores and cracks was found at the joints. Solid-state joining was found on all pairs of materials, however, only in the STS410 / SUS430 pair it had significant dimensions in relation to the size of the joining area and was found in the middle and end areas of the plug at impact and contact point velocities: Vi =310 – 420, Vc = 2750 – 3670 m / s.

References (24)

1. R. L. Klueh, A. T. Nelson. J. Nucl. Mater. 371, 37 (2007).
2. T. K. Kim, S. Noh, S. H. Kang, J. J. Park, H. J. Jin, M. K. Lee, J. Jang, C. K. Rhee. Nucl. Eng. Technol. 48, 572 (2016).
3. Q. Wu, M. Li, Y. Guo, J. Shan, H. Wang, Y. Chang. Nucl. Mater. Energy. 25, 100804 (2020).
4. A. A. Nikitina, V. S. Ageev, A. P. Chukanov, V. V. Tsvelev, N. P. Porezanov, O. A. Kruglov. J. Nucl. Mater. 428, 117 (2012).
5. M. Seki, K. Hirako, S. Kono, Y. Kihara, T. Kaito, S. Ukai. J. Nucl. Mater. 329-333, 1534 (2004).
6. N. D. Jerred, I. Charit, L. R. Zirker, J. I. Cole. J. Nucl. Mater. 508, 265 (2018).
7. F. Corpace, A. Monnier, J. Grall, J.-P. Manaud, M. Lahaye, A. Poulon-Quintin. Metals (Basel). 7, 333 (2017).
8. O. Doyen, B. Le Gloannec, A. Deschamps, F. De Geuser, C. Pouvreau, A. Poulon-Quintin. J. Nucl. Mater. 518, 326 (2019).
9. D. N. Lysenko, V. V. Ermolaev, A. A. Dudin. Method of Pressure Welding. Patent US 3, 520, 049, 1970.
10. A. Kapil, A. Sharma, J. Clean. Prod. 100, 35 (2015).
11. V. I. Krutikov, S. N. Paranin, D. S. Koleukh, V. V. Ivanov, A. V. Spirin, J. G. Lee, M. K. Lee, C. K. Rhee. Izvestiya VUZov. Fizika. 57, 264 (2014). (in Russian) [В. И. Крутиков, С. Н. Паранин, Д. С. Колеух, В. В. Иванов, А. В. Спирин, J. G. Lee, M. K. Lee, C. K. Rhee. Известия ВУЗов. Физика 57, 264 (2014).].
12. J.-G. Lee, J.-J. Park, M.-K. Lee, C.-K. Rhee, T.-K. Kim, A. V. Spirin, V. I. Krutikov, S. N. Paranin. Metall. Mater. Trans. A. 46, 3132 (2015).
13. J. W. Song, J. J. Park, G. J. Lee, M. K. Lee, K. H. Park, S. J. Hong, J. G. Lee. Met. Mater. Int. 26, 360 (2019).
14. A. S. Bahrani, T. J. Black, B. Crossland. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 296, 123 (1967).
15. F. Findik. Mater. Des. 32, 1081 (2011).
16. D. J. Vigueras, C. T. de Renero, O. T. Inal. Mater. Technol. 22, 200 (2007).
17. A. Ben-Artzy, A. Stern, N. Frage, V. Shribman, O. Sadot. Int. J. Impact Eng. 37, 397 (2010).
18. Y. Zhang, S. S. Babu, C. Prothe, M. Blakely, J. Kwasegroch, M. Laha, G. S. Daehn. J. Mater. Process. Technol. 211, 944 (2011).
19. W. F. Brown, J. Bandas, N. T. Olson. Weld. J. June, 22 (1978).
22. M. R. Kulkarni, T. Kolge, D. Kumar, S. D. Kore, A. Sharma, V. Srikanth, A. Laik, G. Chakraborty, S. Albert. Trans. Indian Inst. Met. 75, 171 (2022).
23. S. K. Sharma, J. M. V. V. S. Aravind, S. Mishra, R. Rani, O. Siddiqui, R. Verma, G. Chakravorty, C. Das, A. Sharma. Mater. Today Proc. 87, 115 (2023).
24. K. Heinz. Pulsed High Magnetic Fields: Physical Effects and Generation Methods Concerning Pulsed Fields up to the Megaoersted Level, North Holland Publishing Company (1970).

Funding

1. Russian Science Foundation (RSF) - 22-79-00307