Microstructure and mechanical properties of low-activation austenitic steel after high-temperature annealing

I.Yu. Litovchenko, S.A. Akkuzin, N.A. Polekhina, K.V. Spiridonova ORCID logo , A.V. Kim ORCID logo , V.V. Osipova ORCID logo , E.N. Moskvichev ORCID logo , V.M. Chernov show affiliations and emails
Received: 09 September 2023; Revised: 15 October 2023; Accepted: 15 October 2023
Citation: I.Y. Litovchenko, S.A. Akkuzin, N.A. Polekhina, K.V. Spiridonova, A.V. Kim, V.V. Osipova, E.N. Moskvichev, V.M. Chernov. Microstructure and mechanical properties of low-activation austenitic steel after high-temperature annealing. Lett. Mater., 2023, 13(4s) 390-396
BibTex   https://doi.org/10.22226/2410-3535-2023-4-390-396


High-temperature annealing of low-activation chromium-manganese austenitic steel leads to discontinuous precipitation of dispersed M23C6 carbides along grain boundaries, micro- and nanotwin boundaries. At coherent twin boundaries, the growth of particles during annealing is limited by cross-sectional dimensions of the twin plates.The effect of high-temperature annealing on the structural-phase states of a new low-activation austenitic steel with high Mn content is studied. It is shown that during annealing for 1–10 hrs at 700°C dispersed particles of M23C6 carbides precipitate in the steel. Under annealing of the solution-treated (ST) steel, these particles precipitate predominantly at the grain boundaries. A longer annealing period of up to 10 hrs leads to an increase in their size and content and a formation of facets at the grain boundaries. Under annealing of the steel in a cold rolled (CR) state, M23C6 particles precipitate predominantly at the boundaries of micro- and nanotwins of deformation. The particles formed at the coherent twin boundaries further grow along the twin boundaries when the annealing time is increased to 10 hrs, forming thin discontinuous precipitates. The lamellar structure consisting of twin / matrix packets under annealing conditions remains stable, while the dislocation density slightly decreases. The precipitation of M23C6 carbides does not significantly affect the steel mechanical properties. The values of yield and tensile strength and elongation to failure both at room and elevated tensile temperatures (650°C) are comparable with the corresponding values before annealing.

References (20)

1. L. I. Ivanov, Yu. M. Platov. Radiation Physics of Metals and Its Applications, 2nd Edition. Cambridge International Science Publishing (2004) 356 p.
2. R. L. Klueh, P. J. Maziasz. Mater. Sci. Eng., A. 127, 17 (1990). Crossref
3. E. V. Demina, M. D. Prusakova, V. V. Roshchin, N. A. Vinogradova, G. D. Orlova. Inorg. Mater.: Applied Research. 1, 115 (2010). Crossref
4. Y. Suzuki, T. Saida, F. Kudough. J. Nucl. Mater. 258, 1687 (1998). Crossref
5. F. Abe, T. Noda, H. Araki, S. Nakazawa. J. Nucl. Mater. 191 - 194, 668 (1992). Crossref
6. J. I. Cole, D. S. Gelles, J. J. Hoyt. J. Nucl. Mater. 191 - 194, 661 (1992). Crossref
7. A. Saeed, R. M. El-Shazly, S. N. Ghali, S. Y. El-khamisy, S. A. El-Moneem El-fiki, M. M. Eissa. Nucl. Sci. 3, 45 (2018). Crossref
8. A. I. Blokhin, V. M. Chernov. Phys. Atom. Nucl. 84 (7), 1272 (2021). Crossref
9. M. H. Lewis, B. Hattersley. Acta Metall. 13, 1159 (1965). Crossref
10. W. Ren, L. Wang. J. Alloys Compd. 905, 164013 (2022). Crossref
11. G. Chen, R. Rahimi, M. Harwarth, M. Motylenko, G. Xu. Scripta Mater. 213, 114597 (2022). Crossref
12. L. M. Roncery, S. Weber, W. Theisen. Acta Mater. 59, 6275 (2011). Crossref
13. N. Terao, B. Sasmal. Metallography. 13, 117 (1980). Crossref
14. L. Zheng, X. Hu, X. Kang, D. Li. Mater. Des. 78, 42 (2015). Crossref
15. P. J. Maziasz. JOM. 41, 14 (1989). Crossref
16. E. A. Kenik, P. J. Maziasz, R. L. Klueh. Phase stability of a manganese-stabilized austenitic stainless steel. Proc. 47th Ann. Meet. Electron Microsc. Soc. Am. (1989) pp. 284 - 285. Crossref
17. I. Yu. Litovchenko, S. A. Akkuzin, N. A. Polekhina, K. V. Almaeva, E. N. Moskvichev, A. V. Kim, V. V. Linnik, V. M. Chernov. Letters on Materials. 12 (4s), 399 (2022). Crossref
18. I. Litovchenko, S. Akkuzin, N. Polekhina, K. Almaeva, V. Linnik, A. Kim, E. Moskvichev, V. Chernov. Metals. 12, 2106 (2022). Crossref
19. H. U. Hong, B. S. Rho, S. W. Nam. Mater. Sci. Eng. A. 318, 285 (2001). Crossref
20. H. Li. Philos. Mag. 96, 551 (2016). Crossref

Similar papers


1. The study was funded by a grant of the Russian Science Foundation - 22-19-00802