Local conductivity of thermobarically sintered detonation nanodiamond

V.A. Plotnikov ORCID logo , S.V. Makarov ORCID logo , D.G. Bogdanov, A.S. Bogdanov show affiliations and emails
Received: 17 June 2023; Revised: 13 October 2023; Accepted: 30 October 2023
Citation: V.A. Plotnikov, S.V. Makarov, D.G. Bogdanov, A.S. Bogdanov. Local conductivity of thermobarically sintered detonation nanodiamond. Lett. Mater., 2023, 13(4) 382-386
BibTex   https://doi.org/10.22226/2410-3535-2023-4-382-386

Abstract

Non-linear volt-current dependences with a zero current area have shown their ties with the structural state of carbon surface layer formed by 2-3 graphene planes assembled in an onion-shaped structure with these planes disoriented with respect to each other so that their new positions differ from the positions in the ideal graphite crystal.Analysis of volt-current dependences discovered in thermobarically sintered detonation nanodiamond composites is covered in the paper. Composite nanodiamond materials were obtained in the course of sintering at the press-free high-pressure apparatus (BARS) under 5 GPa and at temperatures 1300, 1400 and 1500°С. Volt-current dependences are non-linear and show a zero-current area in the voltage interval from −3 to +1 V. Non-linear character of the volt-current dependences is connected with the structural state of the detonation diamond non-diamond carbon shell having a graphite-like onion-shaped structure and composed of 2 – 3 graphene planes about 1 nm thick. It is just the state of the electronic sub-system of such minimum package of graphene planes that stipulates charge carrier tunneling in the current channel under voltage application between the conducting probe and the sample, as well as it defines specific non-linearity of volt-current dependences with the zero-current area.

References (26)

1. H. Sumiya, N. Toda, S. Satoh. Diamond & Related Materials. 6, 1841 (1997). Crossref
2. J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, W. F. Banholzer. Phys. Rev. B. 47, 14850 (1993). Crossref
3. P. A. Vityaz, V. T. Senyut. Phys. Solid State. 46, 743 (2004). (in Russian) [П. А. Витязь, В. Т. Синють, ФТТ. 46, 743 (2004).].
4. D. G. Bogdanov, V. A. Plotnikov, S. V. Makarov, A. S. Bogdanov, A. A. Chepurov. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 62, 25 (2019). (in Russian) [Д. Г. Богданов, В. А. Плотников, С. В. Макаров, А. С. Богданов, А. А. Чепуров. Изв. вузов. Химия и хим. технология. 62, 25 (2019).]. Crossref
5. I. I. Kulakova. Phys. Solid State. 46, 636 (2004). Crossref
6. M. V. Baidakova, A. Y. Vul’, V. I. Siklitskii, N. N. Faleev. Phys. Solid State. 40, 715 (1998). Crossref
7. A. E. Aleksenskii, M. V. Baidakova, A. Y. Vul’, V. I. Siklitskii. Phys. Solid State. 41, 668 (1999). Crossref
8. E. M. Baitinger, E. A. Belenkov, M. M. Brzhezinskaya, V. A. Greshnyakov. Phys. Solid State. 54, 1715 (2012). Crossref
9. A. Chaudhary, J. O. Welch, R. B. Jackman. Appl. Phys. Lett. 96, 242903 (2010). Crossref
10. E.-Z. Piсa-Salazara, K. Sagisakab, Y. Hattorib, et al. Chemical Physics Letters. 737, 100018 (2019). Crossref
11. G. A. Sokolina, S. A. Denisov. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 56, 70 (2013). (in Russian) [Г. А. Соколина, С. А. Денисов. Изв. вузов. Химия и хим. технология. 56, 70 (2013).].
12. R. K. Yafarov, N. M. Kotina. Basic Problems of Material Science. 13, 534 (2016). (in Russian) [Р. К. Яфаров, Н. М. Котина. Фундаментальные проблемы современного материаловедения. 13, 534 (2016).].
13. V. V. Zhirnov, O. A. Shenderova, D. L. Jaeger, T. Tyler, D. A. Areshkin, D. W. Brenner, J. J. Hren. Phys. Solid State. 46, 657 (2004). Crossref
14. V. A. Plotnikov, B. F. Dem’yanov, S. V. Makarov, A. I. Zyryanova. Technical Physics Letters. 45, 359 (2019). Crossref
15. S. K. Gordeev, R. F. Konopleva, V. A. Chekanov, S. B. Korchagina, S. P. Belyaev, I. V. Golosovskii, I. A. Denisov, P. I. Belobrov. Phys. Solid State. 55, 1480 (2013). Crossref
16. S. K. Gordeev, P. I. Belobrov, N. I. Kiselev, E. A. Petrakovskaya, T. C. Ekstrom. MRS Online Proceedings Library. 638, 14161 (2000). Crossref
17. T. Kondo, I. Neitzel, V. N. Mochalin, J. Urai, M. Yuasa, Y. Gogotsi. Journal of Applied Physics. 113, 214307 (2013). Crossref
18. M. Zeiger, N. Jäckel, D. Weingarth, V. Presser. Carbon. 94, 507 (2015). Crossref
19. D. G. Bogdanov, V. A. Plotnikov, S. V. Makarov, A. S. Bogdanov, A. P. Yelisseyev, A. A. Chepurov, E. I. Zhimulev. Letters on Materials. 11 (4), 485 (2021). (in Russian) [Д. Г. Богданов, В. А. Плотников, А. С. Богданов, С. В. Макаров, А. П. Елисеев, А. А. Чепуров, Е. И. Жимулев. Письма о материалах. 11 (4), 485 (2021).]. Crossref
20. D. G. Bogdanov, A. S. Bogdanov, V. A. Plotnikov, S. V. Makarov, A. P. Yelisseyev, A. A. Chepurov. RSC Adv. 11, 12961 (2021). Crossref
21. D. Reznik, C. H. Olk, D. A. Neumann, J. R. D. Copley. Phys. Rev. B. 52, 116 (1995). Crossref
22. S. Tomita, A. Burian, J. C. Dore, D. LeBolloch, M. Fujii, S. Hayashi. Carbon. 40, 1469 (2002). Crossref
23. A. R. Ubbelohde, F. A. Lewis. Graphite and its cristal compounds. Moscow, Mir (1965) 256 p. (in Russian) [А. Р. Уббелоде, Ф. А. Льюис. Графит и его кристаллические состояния. Москва, Мир (1965) 256 с.].
24. T. Enoki. Phys. Solid State. 46, 651 (2004). Crossref
25. E. E. Vdovin, Yu. N. Khanin. JETP Letters. 108, 641 (2018). (in Russian) [Е. Е. Вдовин, Ю. Н. Ханин. Письма в ЖЭТФ. 108, 641 (2018).]. Crossref
26. S. V. Morozov, K. S. Novoselov, A. K. Geim. Physics - Uspekhi. 178, 776 (2008). (in Russian) [С. В. Морозов, К. С. Новоселов, А. К. Гейм. УФН. 178, 776 (2008).]. Crossref