Calculations of the structure and properties of autointercalated graphyne layers

V.A. Greshnyakov ORCID logo , V.V. Pavlik show affiliations and emails
Received: 14 June 2023; Revised: 17 August 2023; Accepted: 30 August 2023
Citation: V.A. Greshnyakov, V.V. Pavlik. Calculations of the structure and properties of autointercalated graphyne layers. Lett. Mater., 2023, 13(4) 323-328
BibTex   https://doi.org/10.22226/2410-3535-2023-4-323-328

Abstract

1. A theoretical study of new autointercalated carbon compounds formed from hexagonal graphyne layers has been performed.
2. The most stable nanostructured materials should be composed of autointercalated alpha-graphyne-1.
3. A porous orthorombic three-dimensional phase can be obtained on the basis of alpha-graphyne-1.Modeling of a new class of carbon compounds consisting of graphyne layers with interpenetrating crystal lattices has been performed. The possibility of forming one-dimensional autointercalated nanostructures based on hexagonal α-, β1-, and γ1‑graphyne layers has been studied within the framework of molecular mechanical calculations. It has been established that the most stable autointercalated nanostructures can be formed only from layers of α-graphyne-1, since their specific difference energy relative to the energy of individual layers is −0.23 kcal ∙ mol / atom. For other nanostructures, the corresponding energy exceeds 0.22 kcal ∙ mol / atom. The possibility of forming three-dimensional phases based on α-graphyne-1 has been also studied. Calculations by the density functional theory method have shown that the densest of these phases has orthorhombic primitive cell containing 32 atoms. In this phase, the graphyne layers wave-like curved and the density can be varied from 1.243 to 1.497 g / cm3. The new phase should be stable at room temperature. Besides, it should be noted that 3D-autointercalated α-graphyne-1 must be a conductor, which can be identified from the calculated X-ray powder diffraction pattern.

References (26)

1. H. W. Kroto. C60: Buckminsterfullerene. New York, Jenny Stanford Publishing (2016) 196 p. https://doi.org/10.1201/b19748.
2. M. S. Dresselhaus, G. Dresselhaus, P. Avouris. Carbon nanotubes. Topics in Applied Physics. Vol. 80. Berlin, Heidelberg, Springer (2001) 448 p. Crossref
3. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim. Nature. 490 (7419), 192 (2012). Crossref
4. E. A. Belenkov, V. A. Greshnyakov. Physics of the Solid State. 55 (8), 1754 (2013). Crossref
5. A. V. Savin, E. A. Korznikova, I. P. Lobzenko, Yu. A. Baimova, S. V. Dmitriev. Physics of the Solid State. 58 (6), 1278 (2016). Crossref
6. M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, K. P. Katin. Fullerenes, Nanotubes and Carbon Nanostructures. 28 (2), 97 (2020). Crossref
7. V. A. Greshnyakov. Journal of Structural Chemistry. 64 (2), 324 (2023). Crossref
8. A. N. Enyashin, A. L. Ivanovskii. Physica Status Solidi B. 248 (8), 1879 (2011). Crossref
9. R. I. Babicheva, S. V. Dmitriev, E. A. Korznikova, K. Zhou. Journal of Experimental and Theoretical Physics. 129 (1), 66 (2019). Crossref
10. P. V. Polyakova, J. A. Baimova. International Journal of Molecular Sciences. 24 (7), 6691 (2023). Crossref
11. V. A. Greshnyakov, E. A. Belenkov. Journal of Experimental and Theoretical Physics. 133 (6), 744 (2021). Crossref
12. E. A. Belenkov, V. A. Greshnyakov, V. V. Mavrinskii. Nanosystems: Physics, Chemistry, Mathematics. 12 (6), 672 (2021). Crossref
13. V. G. Desyatkin, W. B. Martin, A. E. Aliev et al. Journal of the American Chemical Society. 144 (39), 17999 (2022). Crossref
14. E. S. Dolina, P. A. Kulyamin, A. A. Grekova, A. I. Kochaev, M. M. Maslov, K. P. Katin. Materials. 16 (5), 1964 (2023). Crossref
15. V. A. Greshnyakov, E. A. Belenkov. Technical Physics. 61 (10), 1462 (2016). Crossref
16. L. K. Rysaevaa, D. S. Lisovenko, V. A. Gorodtsov, J. A. Baimova. Computational Materials Science. 172, 109355 (2020). Crossref
17. A. N. Enyashin, A. L. Ivanovskii. JETP Letters. 86 (4), 537 (2007). Crossref
18. N. L. Allinger, Y. H. Yuh, J.-H. Lii. Journal of American chemical society. 111 (23), 8551 (1989). Crossref
19. D. R. Lide. CRC handbook of chemistry and physics. 89th ed. Boca Raton, CRC Press (2009) 2692 p.
20. P. Giannozzi, S. Baroni, N. Bonini. Journal of Physics: Condensed Matter. 21 (39), 395502 (2009). Crossref
21. J. P. Perdew, A. Zunger. Physical Review B. 23 (10), 5048 (1981). Crossref
22. J. P. Perdew, K. Burke, M. Ernzerhof. Physical Review Letters. 77 (18), 3865 (1996). Crossref
23. E. A. Belenkov, V. A. Greshnyakov. Physics of the Solid State. 59 (10), 1926 (2017). Crossref
24. V. A. Greshnyakov. JETP Letters. 117 (4), 306 (2023). Crossref
25. B. G. Kim, H. Joon Choi. Physical Review B. 86 (11), 115435 (2012). Crossref
26. V. E. Zhivulin, L. A. Pesin, E. A. Belenkov, V. A. Greshnyakov, N. Zlobina, M. Brzhezinskaya. Polymer Degradation and Stability. 172, 109059 (2020). Crossref

Similar papers

Funding

1. Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment - 075-01493-23-00