Effect of LaB6 nanoparticles on the electronic and emission properties of single-walled carbon nanotubes / graphene hybrid 1D nanomaterial

O.E. Glukhova ORCID logo , M.M. Slepchenkov ORCID logo show affiliations and emails
Received: 22 June 2023; Revised: 18 July 2023; Accepted: 21 July 2023
Citation: O.E. Glukhova, M.M. Slepchenkov. Effect of LaB6 nanoparticles on the electronic and emission properties of single-walled carbon nanotubes / graphene hybrid 1D nanomaterial. Lett. Mater., 2023, 13(4) 312-316
BibTex   https://doi.org/10.22226/2410-3535-2023-4-312-316

Abstract

It has been established that the localization of crystalline LaB6 nanoparticles determines the work function of the hybrid carbon nanomaterial single-walled nanotubes/graphene. As the mass fraction of LaB6 nanoparticles increases, the work function decreases.Using the density functional theory (DFT), we study the influence of the localization and the mass fraction of crystalline LaB6 nanoparticles on the electronic structure and emission properties of a 1D nanomaterial based on single-walled carbon nanotubes (SWCNTs) covalently bonded to graphene sheets. It has been found that the localization of LaB6 nanoparticles determines the work function of the SWCNT / graphene complex. The greatest decrease in the work function is observed when the LaB6 nanoparticles are located in the region of the nanotube-graphene junction. A successive increase in the mass fraction (wt.) of LaB6 from 4.5 % to 47 % showed that the decrease in the work function reaches saturation at ≈41 wt.%. It is shown that decorating the framework of SWCNT / graphene 1D nanomaterial with LaB6 nanoparticles makes it possible to achieve a decrease in the work function by ≈13 % compared to a pure carbon framework.

References (31)

1. J. L. Qi, F. Zhang, L. X. Zhang, J. Cao, J. C. Feng. Mater. Res. Express. 1, 025601 (2014). Crossref
2. S. Riyajuddin, S. Kumar, K. Soni, S. P. Gaur, D. Badhwar, K. Ghosh. Nanotechnology. 30, 385702 (2019). Crossref
3. J. H. Deng, R. N. Liu, Y. Zhang, W. X. Zhu, A. L. Han, G. A. Cheng. J. Alloys Compd. 723, 75 (2017). Crossref
4. L. A. Chernozatonskii, P. B. Sorokin, A. A. Artukh. Russ. Chem. Rev. 83 (3), 251 (2014). Crossref
5. X. Hong, W. Shi, H. Zheng, D. Liang. Vacuum. 169, 108917 (2019). Crossref
6. Q. Ji, B. Wang, Y. Zheng, X. Yan, F. Zeng, B. Lu. J. Alloys Compd. 897, 163136 (2022). Crossref
7. J. H. Deng, R. T. Zheng, Y. M. Yang, Y. Zhao, G. Cheng. Carbon. 50, 4732 (2012). Crossref
8. D. D. Nguyen, N. H. Tai, S. Y. Chen, Y. L. Chueh. Nanoscale. 4, 632 (2012). Crossref
9. J. Gong, P. Yang. RSC Adv. 4, 19622 (2014). Crossref
10. L. Chen, H. He, H. Yu, Y. Cao, D. Lei, Q. Menggen, C. Wu, L. Hu. J. Alloys Compd. 610, 659 (2014). Crossref
11. F. Giubileo, A. Di Bartolomeo, L. Iemmo, G. Luongo, F. Urban. Appl. Sci. 8, 526 (2018). Crossref
12. N. A. Bushuev, O. E. Glukhova, Yu. A. Grigor’ev, D. V. Ivanov, A. S. Kolesnikova, A. A. Nikolaev, P. D. Shalaev, V. I. Shesterkin. Tech. Phys. 61 (2), 290 (2016). Crossref
13. N. A. Poklonski, S. A. Vyrko, A. I. Siahlo, O. N. Poklonskaya, S. V. Ratkevich, N. N. Hieu, A. A. Kocherzhenko. Mater. Res. Express. 6, 042002 (2019). Crossref
14. Yu. V. Gulyaev, N. I. Sinitsyn, G. V. Torgashov, Sh. T. Mevlyut, A. I. Zhbanov, Yu. F. Zakharchenko, Z. Ya. Kosakovskaya, L. A. Chernozatonskii, O. E. Glukhova, I. G. Torgashov. J. Vac. Sci. Technol. B. 15 (2), 422 (1997). Crossref
15. E. D. Eidelman, A. V. Arkhipov. Phys. Usp. 63 (7), 648 (2020). Crossref
16. S. Tang, J. Tang, J. Uzuhashi, T. Ohkubo, W. Hayami, J. Yuan, M. Takeguchi, M. Mitome, L. C. Qin. Nanoscale Adv. 3, 2787 (2021). Crossref
17. G. A. Parakhin, R. S. Pobbubniy, A. N. Nesterenko, A. P. Sinitsin. Procedia Eng. 185, 80 (2017). Crossref
18. S. Tang, J. Tang, T. W. Chiu, W. Hayami, J. Uzuhashi, T. Ohkubo, F. Uesugi, M. Takeguchi, M. Mitome, L. C. Qin. Nano Res. 13, 1620 (2020). Crossref
19. G. Kaur, R. Kumar, I. Lahiri. Phys. E: Low-Dimens. Syst. Nanostructures. 112, 10 (2019). Crossref
20. S. Tang, J. Tang, E. Okunishi, Y. Ninota, A. Yasuhara, J. Uzuhashi, T. Ohkubo, M. Takeguchi, J. Yuan, L. C. Qin. Mater. Today. 57, 35 (2022). Crossref
21. V. Gushenets, A. Bugaev, E. Oks. Rev. Sci. Instrum. 90, 113309 (2019). Crossref
22. X. Wang, Y. Lv, H. Wang, K. Qi, G. Cao. Mater. Res. Express. 6, 045015 (2019). Crossref
23. H. Yamaguchi, R. Yusa, G. Wang, M. T. Pettes, F. Liu, Y. Tsuda, A. Yoshigoe, T. Abukawa, N. A. Moody, S. Ogawa. Appl. Phys. Lett. 122, 141901 (2023). Crossref
24. G. G. Sominskii, V. E. Sezonov, D. A. Sakseev, T. A. Tumareva. Technical Physics. 56 (6), 850 (2011). Crossref
25. Y. Yu, S. Wang, W. Li, Z. Chen. Powder Technol. 2018, 323, 203 (2018). Crossref
26. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal. J. Phys.: Condens. Matt. 14, 2745 (2002). Crossref
27. The SIESTA group. Available online: https://departments.icmab.es/leem/siesta/ (accessed on 10 January 2023).
28. H. J. Monkhorst, J. D. Pack. Phys. Rev. B. 13, 5188 (1976). Crossref
29. P. Pulay. Chem. Phys. Lett. 73, 393 (1980). Crossref
30. R. S. Mulliken. Electronic Population Analysis on LCAO - MO Molecular Wave Functions I. J. Chem. Phys. 23, 1833 (1955). Crossref
31. A. Y. Gerasimenko, A. V. Kuksin, Y. P. Shaman, E. P. Kitsyuk, Y. O. Fedorova, D. T. Murashko, A. A. Shamanaev, E. M. Eganova, A. V. Sysa, M. S. Savelyev, D. V. Telyshev, A. A. Pavlov, O. E. Glukhova. Nanomaterials. 12, 2812 (2022). Crossref

Funding

1. Russian Science Foundation - 21-19-00226