Influence of non-abrasive ultrasonic finishing on surface characteristics and fatigue strength of UFG titanium

R.N. Asfandiyarov, D.A. Aksenov, M.A. Shishkunova, G.I. Raab show affiliations and emails
Received 18 April 2023; Accepted 14 June 2023;
Citation: R.N. Asfandiyarov, D.A. Aksenov, M.A. Shishkunova, G.I. Raab. Influence of non-abrasive ultrasonic finishing on surface characteristics and fatigue strength of UFG titanium. Lett. Mater., 2023, 13(3) 260-265
BibTex   https://doi.org/10.22226/2410-3535-2023-3-260-265

Abstract

Increased fatigue resistance of grade 4 titanium as a result of complex processing, including the formation of an UFG structure and non-abrasive ultrasonic finishing of surfaceThis paper considers the complex treatment of Grade 4 titanium, including the formation of an UFG structure and surface hardening by non-abrasive ultrasonic finishing (NAUF). In the study it is shown that NAUF of UFG titanium leads to noticeable refinement of the structure of the surface layer. Thus, at a depth up to 60 μm, an equiaxed structure is formed with the refinement of structural fragments from an average transverse size of 175 nm to 130 nm. It has been established that NAUF of UFG titanium makes it possible to increase the surface microhardness up to 8740 MPa. It is found that after NAUF compressive residual stresses prevail in the surface, the value of which is an order of magnitude higher than that of UFG titanium and reaches 620 MPa. Comparative fatigue tests of CG and UFG specimens with a V-shaped annular groove under conditions of bending with rotation were carried out. It has been established that with the testing base N = 3 ∙106 cycles, the fatigue endurance limit of UFG specimens (σσ =1.33) with NAUF reaches σ−1= 490 MPa, and without treatment σ−1= 400 MPa, thus the increase in the fatigue endurance limit was ≈20 %.

References (34)

1. S. H. Din. Proceedings on Engineering. 3 (1), 41 (2021). Crossref
2. E. A. Erubaev, Y. R. Kolobov, I. N. Kuzmenko, G. V. Khramov, M. B. Ivanov, M. Y. Gazizova. Fundamental research. 11 (7), 1318 (2015). (in Russian) [Е. А. Ерубаев, Ю. Р. Колобов, И. Н. Кузьменко, Г. В. Храмов, М. Б. Иванов, М. Ю. Газизова. Фундаментальные исследования. 11 (7), 1318 (2015).].
3. G. S. Dyakonov, S. Mironov, I. P. Semenova, R. Z. Valiev, S. L. Semiatin. Materials Science and Engineering: A. 742, 89 (2019). Crossref
4. C. N. Elias et al. Jom. 60 (3), 46 (2008). Crossref
5. B. S. Lim, H. R. Cho, H. C. Choe. Thin Solid Films. 754, 139314 (2022). Crossref
6. M. G. Mahlobo, R. L. Chikosha, P. A. Olubambi. Journal of Materials Research and Technology. 18, 3631 (2022). Crossref
7. P. Afzali, R. Ghomashchi, R. H. Oskouei. Metals. 9 (8), 878 (2019). Crossref
8. K. Václavová et al. Materials Science and Engineering: A. 682, 220 (2017). Crossref
9. V. Segal. Materials. 11, 1175 (2018). Crossref
10. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk nanostructured materials: fundamental principles and applications. St. Petersburg, EcoVektor (2017) 479 p. (in Russian) [Р. З. Валиев. Объемные наноструктурные материалы: фундаментальные основы и применения. Санкт-Петербург, Эко-Вектор (2017) 479 c.].
11. S. S. S. Kumar, K. Priyasudha, M. S. Rao, T. Raghu. Materials & Design. 101, 117 (2016). Crossref
12. Y. Estrin, R. Lapovok, A. E. Medvedev, C. Kasper, E. Ivanova, T. C. Lowe. Mechanical performance and cell response of pure titanium with ultrafine-grained structure produced by severe plastic deformation. Titanium in Medical and Dental Applications. Woodhead Publishing (2018). Crossref
13. H. Wang, C. Ban, N. Zhao, Y. Kang, T. Qin, S. Liu, J. Cui. Materials Letters. 266, 127485 (2020). Crossref
14. J. Stráský et al. Microstructure and lattice defects in ultrafine grained biomedical α + β and metastable β Ti alloys. Titanium in Medical and Dental Applications. Woodhead Publishing (2018). Crossref
15. A. V. Polyakov, I. P. Semenova, E. Ivanov, R. Z. Valiev. Materials Science and Engineering. 461, 012077 (2018). Crossref
16. I. P. Semenova, A. V. Polyakov, V. V. Polyakova, Y. F. Grishina, Y. Huang, R. Z. Valiev, T. G. Langdon. Materials Science and Engineering: A. 696, 166 (2017). Crossref
17. T. Guo, S. Ivanovski, K. Gulati. Materials & Design. 223, 111110 (2022). Crossref
18. T. O. Olugbade, J. Lu. Nano Materials Science. 2 (1), 3 (2020). Crossref
19. M. Kumar, A. Kumar, H. N. S. Yadav, A. Alok, M. Das. Materials Today: Proceedings. 47, 3985 (2021). Crossref
20. A. S. Zlobin et al. Influence of residual stresses on the stress intensity coefficient in threaded parts made of VT16 alloy. Motion control and navigation of aircraft: Proceedings of the XXI All-Russian Seminar on Motion Control and Navigation of Aircraft: Part II. Samara, Russia (2019) pp. 86 - 89. (in Russian) [А. С. Злобин и др. Влияние остаточных напряжений на коэффициент интенсивности напряжений в резьбовых деталях из сплава ВТ16. Управление движением и навигация летательных аппаратов: Сборник трудов XXI Всероссийского семинара по управлению движением и навигации летательных аппаратов: Часть II. Самара, Россия (2019) сc. 86 - 89.].
21. X. Yu et al. Theoretical and Applied Fracture Mechanics. 122, 103568 (2022). Crossref
22. O. V. Fedchishin, V. V. Trofimov, V. A. Klimenov. Siberian medical journal. 89 (6), 189 (2009). (in Russian) [О. В. Федчишин, В. В. Трофимов, В. А. Клименов. Сибирский медицинский журнал. 89 (6), 189 (2009).].
23. H. Zhang, R. Chiang, H. F. Qin, Z. C. Ren, X. N. Hou, D. Lin, G. L. Doll, V. K. Vasudevan, Y. L. Dong, C. Ye. International Journal of Fatigue. 103, 136 (2017). Crossref
24. J. Liu, S. Suslov, Z. C. Ren, Y. L. Dong, C. Ye. International Journal of Machine Tools and Manufacture. 136, 19 (2019). Crossref
25. V. M. Davydov et al. Vestnik of the Pacific State University. 2, 45 (2015). (in Russian) [В. М. Давыдов и др. Вестник Тихоокеанского государственного университета. 2, 45 (2015).].
26. A. A. Khlybov, M. O. Kuvshinov. Physical mesomechanics. 22 (6), 100 (2019). (in Russian) [А. А. Хлыбов, М. О. Кувшинов. Физическая мезомеханика. 22 (6), 100 (2019).]. Crossref
27. M. K. Alexandrov, N. D. Papsheva, O. M. Akushskaya. Vestnik of Samara University. Aerospace and Mechanical Engineering. 10 (3-1), 271 (2011). (in Russian) [М. К. Александров, Н. Д. Папшева, О. М. Акушская. Ультразвуковое упрочнение деталей ГТД. Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 10 (3-1), 271 (2011).]. Crossref
28. M. Müller et al. Abrasive-free ultrasonic finishing of metals. Manufacturing technology. 14, 3 (2014).
29. A. I. Lotkov, A. A. Baturin, V. N. Grishkov, P. V. Kuznetsov, V. A. Klimenov, V. E. Panin. Physical mesomechanics. 8 Special issue, 109 (2005). (in Russian) [А. И. Лотков, А. А. Батурин, В. Н. Гришков, П. В. Кузнецов, В. А. Клименов, В. Е. Панин. Физическая мезомеханика. 8 Спец. Выпуск, 109 (2005).].
30. V. E. Panin, A. V. Panin, Yu. I. Pochivalov, T. F. Elsukova, A. R. Shugurov. Physical mesomechanics. 20 (1), 57 (2017). (in Russian) [В. Е. Панин, А. В. Панин, Ю. И. Почивалов, Т. Ф. Елсукова, А. Р. Шугуров. Физическая мезомеханика. 20 (1), 57 (2017).].
31. R. N. Asfandiyarov, G. I. Raab, D. V. Gunderov, D. A. Aksenov, A. G. Raab, S. D. Gunderova, M. A. Shishkunova. Frontier Materials & Technologies. 3, 41 (2022). (in Russian) [Р. Н. Асфандияров, Г. И. Рааб, Д. В. Гундеров, Д. А. Аксенов, А. Г. Рааб, С. Д. Гундерова, М. А. Шишкунова. Frontier Materials & Technologies 3, 41 (2022).]. Crossref
32. M. Kattoura et al. Materials Science and Engineering: A. 711, 364 (2018). Crossref
33. I. P. Semenova, A. V. Polyakov, G. I. Raab, et al. J Mater Sci. 47, 7777 (2012). Crossref
34. V. E. Panin, T. F. Elsukova, Yu. F. Popkova, Yu. I. Pochivalov, R. Sunder. Phys. Mesomech. 18, 1 (2015). Crossref

Funding

1. Russian Scientific Foundation - 21-79-00124