Characterization of microemulsion structure using atomic force microscopy

Y.S. Zamula, M.O. Afanasyev, E.S. Batirshin show affiliations and emails
Received: 11 May 2023; Accepted: 10 September 2023
Citation: Y.S. Zamula, M.O. Afanasyev, E.S. Batirshin. Characterization of microemulsion structure using atomic force microscopy. Lett. Mater., 2023, 13(4) 286-291
BibTex   https://doi.org/10.22226/2410-3535-2023-4-286-291

Abstract

The morphological features of the structures of the adsorbed substance on the surface of freshly cleaved mica in contact with the three-component water-surfactant-oil system were studied using atomic force microscopy. The mechanism of adsorption of anionic surfactants on the mica surface in the presence of cations in solution has been confirmed.Characteristics of structures adsorbed on freshly cleaved mica in contact with a microemulsion were studied using atomic force microscopy. The microemulsion is formed by a three-component system: an aqueous solution of NaCl (4 wt.%) — sodium dodecyl sulfate / n-Butanol (surfactant / cosurfactant) — n-heptane. A ternary phase diagram of this system was constructed based on the results of tube tests, and the boundaries of the single-phase and two-phase regions were determined. The surface of the samples was scanned in the semi-contact mode using a cantilever with a tip curvature radius of less than 10 nm. The mechanism of adsorption of anionic surfactants on the mica surface in the presence of cations in solution has been confirmed. Comparison of the images of the adsorbed substance obtained upon contact with the microemulsion from different regions of the phase diagram showed a correlation between the morphological characteristics of the images and the structural features of the microemulsions. On the surface topographies obtained, one can observe qualitative differences in the structure. Depending on the composition of the microemulsion, various characteristic patterns can be observed, such as single particles or complex structures with well-developed morphology, corresponding to bicontinuous microemulsions.

References (24)

1. K. L. Mittel, P. Mukherjee, L. M. Prince, et al. Micellization, solubilization, and microemulsions (ed. by K. Mittel). Moscow, Mir (1980) 597 p. (in Russian) [К. Л. Миттел, П. Мукерджи, Л. М. Принс и др. Мицеллообразование, солюбилизация и микроэмульсии (под ред. К. Миттел). Москва, Мир (1980) 597 с.].
2. Emulsion-based systems for delivery of food active compounds: formation, application, health and safety (Ed. by R. Greiner, S. Roohinejad, I. Oey, J. Wen). John Wiley & Sons Ltd (2018). 294 p. Crossref
3. A. Mahboob, S. Kalam, M. S. Kamal, S. S. Hussain, T. Solling. J Petrol Sci Eng. 208, 109312 (2022). Crossref
4. S. Tenjarla. Critical Reviews™ in Therapeutic Drug Carrier Systems. 16 (5), 62 (1999). Crossref
5. A. Drmota, M. Drofenik, J. Koselj, A. Žnidaršič. Microemulsions - An Introduction to Properties and Applications. 10, 191 (2012). https://doi.org/10.5772/36154.
6. P. A. Winsor. T Faraday Soc. 44, 376 (1948). Crossref
7. E. D. Schukin, A. V. Pertsov, E. A. Amelina. Colloid chemistry: a textbook for bachelors. Moscow, Yurayt Publishing House (2013) 444 p. (in Russian) [Е. Д. Щукин, А. В. Перцов, Е. А. Амелина. Коллоидная химия: учебник для бакалавров. Москва, Издательство Юрайт (2013) 444 с.].
8. D. P. Acharya, P. G. Hartley. Curr Opin Colloid In. 17 (5), 274 (2012). Crossref
9. G. C. da Silva, W. A. de Morais, A. D. Neto, T. N. C. Dantas, J. L. C. Fonseca. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 397, 42 (2012). Crossref
10. J. Kuntsche, J. C. Horst, H. Bunjes. Int J Pharm. 417 (1-2), 120 (2011). Crossref
11. J. R. Han, W. H. Shang, J. N. Yan, Y. N. Du, D. J. McClements, H. Xiao, H.-T. Wu, B. W. Zhu. Food Bioprocess Tech. 13, 680 (2020). Crossref
12. T. Blochowicz, C. Gögelein, T. Spehr, M. Müller, B. Stühn. Phys Rev E. 76 (4), 041505 (2007). Crossref
13. T. Spehr, B. Frick, I. Grillo, P. Falus, M. Mülle, B. Stühn. Phys Rev E. 79 (3), 031404 (2009). Crossref
14. J. L. Lemyre, S. Lamarre, A. Beaupré, A. M. Ritcey. Langmuir. 26 (13), 10524 (2010). Crossref
15. I. Furó. J Mol Liq. 117 (1-3), 117 (2005). Crossref
16. T. M. Ho, F. Abik, K. S. Mikkonen. Crit Rev Food Sci. 62 (18), 4908 (2022). Crossref
17. A. P. Gunning, A. R. Mackie, P. J. Wilde, V. J. Morris. Langmuir. 20 (1), 116 (2004).+. Crossref
18. L. J. Pérez-Córdoba, I. T. Norton, H. K. Batchelor, K. Gkatzionis, F. Spyropoulos, P. J. Sobral. Food Hydrocolloids. 79, 544 (2018). Crossref
19. C. Preetz, A. Hauser, G. Hause, A. Kramer, K. Mäder. Eur J Pharm Sci. 39 (1-3), 141 (2010). Crossref
20. A. M. Bellocq, J. Biais, B. Clin, A. Gelot, P. Lalanne, B. Lemanceau. J Colloid Interf Sci. 74 (2), 311 (1980). Crossref
21. J. Lü, M. Ye, N. Duan, B. Li. Nanoscale Res Lett. 4 (9), 1029 (2009). Crossref
22. F. J. Allen, L. R. Griffin, R. M. Alloway, P. Gutfreund, S. Y. Lee, C. L. Truscott, S. M. Clarke. Langmuir. 33 (32), 7881 (2017). Crossref
23. J. S. Bernardes, C. A. Rezende, F. Galembeck. Langmuir. 26 (11), 7824 (2010). Crossref
24. G. Duplâtre, M. F. Ferreira Marques, M. da Graça Miguel. J Phys Chem. 100 (41), 16608 (1996). Crossref

Funding

1. Russian Science Foundation - 21-79-10212