Thin Ge films formed by magnetron sputtering deposition and implanted with Cu+ ions

I.M. Klimovich, A.L. Stepanov ORCID logo show affiliations and emails
Received 02 January 2023; Accepted 22 May 2023;
Citation: I.M. Klimovich, A.L. Stepanov. Thin Ge films formed by magnetron sputtering deposition and implanted with Cu+ ions. Lett. Mater., 2023, 13(3) 243-248
BibTex   https://doi.org/10.22226/2410-3535-2023-3-243-248

Abstract

Nanoporous germanium surface formed by magnetron sputtering and ion implantationThin amorphous Ge films with a thickness of ≈60 nm were deposited on silica substrates by high-power impulse magnetron sputtering in Ar atmosphere. The obtained Ge films were implanted with Cu+ ions at an energy of 40 keV, a current density of 5 μA / cm2 with doses of 6.2 ·1015 and 3.1·1016 ion / cm2. The surface morphology of the deposited films and their transverse structure were studied by scanning electron and atomic force microscopy, as well as optical reflectance spectroscopy. It was shown that at a low dose, Cu nanoparticles are formed in the irradiated amorphous Ge layer, while an increase in the dose leads to the formation of a nanoporous Ge layer without metal nanoparticles. The work demonstrates that magnetron sputtering deposition offers good potential for nanoporous Ge-based films for energetic applications in the near future.

References (27)

1. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. P. Zaccaria, C. Capiglia. J. Power Sourse. 421, 257 (2014). Crossref
2. H. Chang, Y.-R. Wu, X. Han, T.-F. Yi. Energy Mater. 1, 100003 (2021). Crossref
3. P. Selinis, F. Farmakis. J. Electrochemical Society. 169, 10526 (2022). Crossref
4. S. Wang, W. Ma, W. Yang, Q. Bai, H. Gao, Z. Peng, Z. Zhang. J. Chem. Phys. 155, 184702 (2021). Crossref
5. G. Uchida, K. Nagai, Y. Habu, J. Hayashi, Y. Ikebe, M. Hiramatsu, R. Narishige, N. Itagaki, M. Shiratani, Y. Setsuhara. Sci. Reports. 12, 1742 (2022). Crossref
6. A. N. Sosa, I. González, A. Trejo, Á. Miranda, F. Salazar, M. Cruz-Irisson. J. Computational Chemistry. 1, 1 (2020). Crossref
7. X. Sheng, Z. Zeng, C. Du, T. Shu, X. Meng. J. Mater. Sci. 56, 15258 (2021). Crossref
8. E. G. Rojas, J. Hensen, J. Carstensen, H. Foll, R. Brendel. ECS Transactions. 33, 96 (2011). Crossref
9. D. Nowak, M. Turkiewicz, N. Solnica. Coatins. 9, 120 (2019). Crossref
10. V. G. Evtugin, A. M. Rogov, V. I. Nuzhdin, V. F. Valeev, T. S. Kavetskyy, R. I. Khalilov, A. L. Stepanov. Vascuum. 165, 320 (2019). Crossref
11. M. E. Koleva, M. Dutta, N. Fukata. Master. Sci. Engin. B. 187, 102 (2014). Crossref
12. R. Zegadi, N. Lorrain, L. Bodiou, M. Guendouz, L. Ziet, J. Charrier. J. Opt. 23, 035102 (2021). Crossref
13. I. M. Gavrilin, Yu. O. Kudryashova, A. A. Kuz’mina, T. L. Kulova, A. M. Skundin, V. V. Emets, R. L. Volkov, A. A. Dronov, N. I. Borgardt, S. A. Gavrilov. J. Electroanalytical Chem. 888, 1152009 (2021). Crossref
14. T. Song, Y. Jeon, M. Samal, H. Han, H. Park, J. Ha, D. K. Yi, J.-M. Choi, H. Chang, Y.-M. Choi, U. Paik. Energy Envirinmental Sci. 5, 9028 (2012). Crossref
15. K. Mishra, X.-C. Liu, F.-S. Ke, X.-D. Zhou. Composites Part B. 163, 158 (2019). Crossref
16. K. S. Jones, B. R. Yates, B. L. Darby. Structures including porous germanium, methods of making, and methods of use thereof. Patent US No. 0127580. 08 May 2014.
17. A. M. Rogov, V. I. Nuzhdin, V. F. Valeev, I. A. Romanov, I. M. Klimovich, A. L. Stepanov. Nanotechnologies in Russia. 13, 487 (2019).
18. I. M. Klimovich, V. N. Kuleshov, V. A. Zaikov, A. P. Burmakou, F. F. Komarov, O. R. Ludchik. Devices Meth. Measurem. 6, 139 (2015).
19. S.-I. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, M. L. Simpson. Appl. Phys. Lett. 89, 22104 (2006).
20. G. Impellizzeri, L. Romano, L. Bosco, C. Spinella, M. G. Grimaldi. Appl. Phys. Express. 5, 35201 (2012). Crossref
21. T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley. Phys. Rev. B. 2, 397 (1970).
22. H. Liu, S. Li, P. Sun, X. Yang, D. Liu, Y. Ji, F. Zhang, D. Chen, Y. Cui. Mater. Sci. Semicond. Processing. 83, 58 (2018). Crossref
23. A. L. Stepanov, A. M. Rogov. Optics Comm. 474, 126052 (2020). Crossref
24. Z. Al-Sharafi, S. Mohyeddine, S. O. Mohammed, R. M. Kershi. Phys. Res. Intern. 1, 1 (2014). Crossref
25. A. L. Stepanov, V. I. Nuzhdin, A. M. Rogov, V. V. Vorobev. Formation porous silicon and germanium layers with metal nanoparticles. Kazan, FRС Kazan Scientific Center, Russian Academy of Sciences (2019) 186 p. (in Russian) [А. Л. Степанов, В. И. Нуждин, А.М. Рогов, В. В. Воробьев. Формирование слоев пористого кремния и германия с наночастицами металлов. ФИЦ Каз НЦ РАН (2019) 186 с.].
26. K. L. Bhatia, P. Singh, M. Singh, N. Kishore, N. C. Mehra, D. Kanjilal. Nucl. Instr. Meth. Phys. Res. B. 94, 379 (1994).
27. Q.-C. Zhang, J. C. Kelly, M. J. Kenny. Nucl. Instr. Meth. Phys. Res. B. 47, 257 (1990).

Funding

1. Russian government assignment for FRC Kazan Scientific Center of RAS - Russian Scientific Foundation, grant No. 19-79-10216