Investigation of the effect of compacting mode parameters of a carbon-aluminum wire preform on the strength of the produced compact

B.I. Atanov ORCID logo , S.N. Galyshev ORCID logo , N.G. Zaripov, U.S. Shayakhmetov, A.R. Khamidullin show affiliations and emails
Received 03 October 2022; Accepted 22 January 2023;
Citation: B.I. Atanov, S.N. Galyshev, N.G. Zaripov, U.S. Shayakhmetov, A.R. Khamidullin. Investigation of the effect of compacting mode parameters of a carbon-aluminum wire preform on the strength of the produced compact. Lett. Mater., 2023, 13(2) 115-120
BibTex   https://doi.org/10.22226/2410-3535-2023-2-115-120

Abstract

It is shown that with an increase in temperature, load, and holding time, the volume fraction of pores decreases, and the fraction of fiber increases, which leads to an increase in the composite strength. In all cases, the shape of the fracture surface indicates the brittle nature of the composite fracture.The effect of the modes of compaction of a carbon-aluminum composite of a wire preform on its microstructure, properties, and nature of fracture has been studied. It is shown that with an increase in the temperature, load, and holding time, the volume fraction of pores decreases, and the fraction of fiber increases, which leads to an increase in the composite strength. In all cases, the shape of the fracture surface indicates the brittle nature of the composite fracture.

References (21)

1. V. V. Astanin. Microstructural design of promising materials and composites based on them: Textbook. The second edition corrected and supplemented. Ufa, UGATU (2008) 80 p. (in Russian) [В. В. Астанин. Микроструктурный дизайн перспективных материалов и композитов на их основе: Учебное пособие. Издание второе, исправленное и дополненное. Уфа, УГАТУ (2008) 80 с.].
2. S. T. Mileiko. Metal and Ceramic Based Composite. Amsterdam, Elsevier (1997) 690 p.
3. S. T. Mileiko. Composites and nanostructures. 13 (3-4), 59 (2021). (in Russian) [С. Т. Милейко. Композиты и наноструктуры. 13 (3-4), 59 (2021).].
4. X. Wang, G. Q. Chen, B. Li et al. J Mater Sci. 44, 4303(2009). Crossref
5. A. Daoud. Materials Science and Engineering: A. 391, 114 (2005). Crossref
6. B. B. Singh, M. Balasubramanian. Journal of Materials Processing Technology. 209, 2104 (2009). Crossref
7. T. Matsunaga, K. Matsuda, T. Hatayama, K. Shinozaki, M. Yoshida. Composites Part A: Applied Science and Manufacturing. 38 (8), 1902 (2007). Crossref
8. G. Li, Y. Qu, Y. Yang, Q. Zhou, X. Liu, R. Li. Journal of Materials Science and Technology. 40, 81 (2020). Crossref
9. E. Hajjari, M. Divandari, A. R. Mirhabibi. Materials & Design (1980-2015). 31 (5), 2381 (2010). Crossref
10. Y. Huang, Q. Ouyang, D. Zhang et al. Acta Metall. Sin. (Engl. Lett.). 27, 775 (2014). Crossref
11. K. I. Portnoy, N. I. Timofeeva, A. A. Zabolotsky. Powder Metallurgy. 2, 45 (1981). (in Russian) [К. И. Портной, Н. И. Тимофеева, А. А. Заболотский. Порошковая металлургия. 2, 45 (1981).].
12. P. Baumli, J. Sychev, I. Budai, J. T. Szabo, G. Kaptay. Composites Part A: Applied Science and Manufacturing. 44, 47 (2013). Crossref
13. D. B. Miracle. Composites Science and Technology. 65, 2526 (2005). Crossref
14. K. Shirvanimoghaddam, S. U. Hamim, M. K. Akbari, S. M. Fakhrhoseini, H. Khayyam, A. H. Pakseresht, E. Ghasali, M. Zabet, K. S. Munir, S. Jia, J. P. Davim, M. Naebe. Composites Part A Applied Science and Manufacturing. 92, 70 (2017). Crossref
15. Z. Hua, Y. Liu, G. Yao et al. J. of Materi Eng and Perform. 21, 324 (2012). Crossref
16. M. Gao, P. Gao, Y. Wang, T. Lei, Ch. Ouyang. Metals and Materials International. 27, 5425 (2021). Crossref
17. S. Galyshev. Metals. 11 (7), 1006 (2021). Crossref
18. S. Galyshev et al. IJMMM. 26, 1578 (2019). Crossref
19. S. Galyshev, B. Atanov. Metals. 12, 1753 (2022). Crossref
20. H. E. Deve, C. McCullough. JOM. 47, 33 (1995). Crossref
21. S. Galyshev, V. Orlov, B. Atanov, E. Kolyvanov, O. Averichev, T. Akopdzhanyan. Metals. 11, 2057 (2021). Crossref

Funding

1. Russian Science Foundation - 22-79-10064