Simulation of recoverable strain variation during isothermal holding of the Ni51Ti49 alloy under various regimes

N.N. Resnina, A.M. Ivanov ORCID logo , F.S. Belyaev ORCID logo , A.E. Volkov, S.P. Belyaev show affiliations and emails
Received 21 November 2022; Accepted 08 December 2022;
Citation: N.N. Resnina, A.M. Ivanov, F.S. Belyaev, A.E. Volkov, S.P. Belyaev. Simulation of recoverable strain variation during isothermal holding of the Ni51Ti49 alloy under various regimes. Lett. Mater., 2023, 13(1) 33-38
BibTex   https://doi.org/10.22226/2410-3535-2023-1-33-38

Abstract

1. Modified Likhachev-Volkov  model  may be successfully used for the simulation of the strain variation during cooling and isothermal holding under stress.
2. To describe the strain variation on holding after active deformation, elastic energy stored during the transformation should be decreasd.The aim of the present paper is to simulate the strain variation on isothermal holding of Ni-rich NiTi alloy under various regimes. The modified Likhachev-Volkov microstructural model and a new Nelder-Mead algorithm for the determination of the model parameters were used. To determine the model parameters, the experimental data obtained during holding of the Ni51Ti49 alloy under a stress of 200 MPa were chosen. Using these parameters, the strain variation on holding of the NiTi alloy under a stress in two regimes was simulated. It was shown that the modified Likhachev-Volkov microstructural model allowed one to calculate the isothermal strain variation on holding after cooling under a stress (Regime 1) and a good correlation between the theoretical and experimental results were found. At the same time, the simulation of the strain variation on holding after active deformation (Regime 2) did not fit to experimental data because the model did not consider the difference in the stored elastic energy in two regimes. It was shown that a decrease in the elastic energy stored during the transformation increased the strain during holding under a stress after active deformation and made the simulated curves to be close to the experimental.

References (16)

1. J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson. Mater. Des. 56, 1078 (2014). Crossref
2. A. Razov, A. Cherniavsky. J. Phys. IV. 112, 1173 (2003). Crossref
3. K. Otsuka, X. Ren. Progress Mater. Sci. 50, 511 (2005). Crossref
4. E. Patoor, A. Eberhardt, M. Berveiller. J. Phys. IV. C1-6, 277 (1996). Crossref
5. D. C. Lagoudas, Z. Bo, M. A. Qidwai. Mech. Composite Mater. Struct. 3, 153 (1996). Crossref
6. A. E. Volkov, M. E. Evard, L. N. Kurzeneva, V. A. Likhachev, V. Yu. Sakharov, V. V. Ushakov. Tech. Phys. 41, 1084 (1996).
7. M. Huang, X. Gao, L. C. Brinson. Int. J. Plasticity. 16, 1371 (2000). Crossref
8. E. Demidova, S. Belyaev, N. Resnina, A. Shelyakov. Mater. Lett. 254, 266 (2019). Crossref
9. A. Ivanov, S. Belyaev, N. Resnina, V. Andreev. Sensor. Actuator. A. 297, 111543 (2019). Crossref
10. N. Resnina, S. Belyaev, E. Demidova, A. Ivanov, A. Gabrielyan, A. Shelyakov, V. Andreev. T Nonferr. Metal. Soc., accepted for publication.
11. S. Belyaev, N. Resnina, E. Demidova, A. Ivanov, A. Shelyakov, V. Andreev, V. Chekanov, E. Ubyivovk. J. Alloys Compnd. 902, 163570 (2021). Crossref
12. E. S. Demidova, F. S. Belyaev, S. P. Belyaev, N. N. Resnina, A. E. Volkov. Lett. Mater. 11, 327 (2021). Crossref
13. A. E. Volkov, F. S. Belyaev, M. E. Evard, N. A. Volkova. MATEC Web of Conf. 33, 1 (2015). Crossref
14. F. S. Beliaev, M. E. Evard, E. S. Ostropiko, A. I. Razov, A. E. Volkov. Shape Memory Superelasticity. 5, 218 (2019). Crossref
15. A. Ivanov, F. Belyaev, A. Volkov, S. Belyaev, N. Resnina. Vestnik St. Petersburg University. Mathematics. 55, 452 (2022).
16. J. A. Nelder, R. A. Mead. The Computer J. 7, 308 (1965). Crossref

Funding

1. Russian Science Foundation - 18-19-00226