On the coefficient of compositional stability of nitrogen for high-nitrogen alloys of the Fe-Cr-Mn-Mo-N system, obtained by the SHS method under nitrogen pressure

M.S. Konovalov, V.I. Lad’yanov, M.I. Mokrushina, V.A. Karev show affiliations and emails
Received 25 August 2022; Accepted 10 January 2023;
Citation: M.S. Konovalov, V.I. Lad’yanov, M.I. Mokrushina, V.A. Karev. On the coefficient of compositional stability of nitrogen for high-nitrogen alloys of the Fe-Cr-Mn-Mo-N system, obtained by the SHS method under nitrogen pressure. Lett. Mater., 2023, 13(2) 121-125
BibTex   https://doi.org/10.22226/2410-3535-2023-2-121-125

Abstract

The value of the nitrogen compositional stability coefficient has been determined for the alloys of the Fe-Cr-Mn-Mo-N system obtained by self-propagating synthesis, namely, aluminothermy under nitrogen pressure. The obtained results permit to predict the maximum possible content of nitrogen in continuous ingots (without bubbles and gas porosity in the volume) and, consequently, the structural-phase composition of alloy and optimal regimes of alloying.The value of the nitrogen compositional stability coefficient has been determined for the alloys of the Fe-Cr-Mn-Mo-N system obtained by self-propagating synthesis, namely, aluminothermy under nitrogen pressure. It is shown that the heat treatment of the alloy containing 14.3 wt.% of chromium, 12.2 wt.% of manganese, 4.0 wt.% of molybdenum and 0.92 wt.% of nitrogen at 1250°C for 2 h leads to the dissolution of a pseudo-perlitic structure (ferrite-nitride mixture) and complete austenization of samples. In this case, the alloy hardness decreases from 255 to 208 HB. The obtained results permit to predict the maximum possible content of nitrogen in continuous ingots (without bubbles and gas porosity in the volume) and, consequently, the structural-phase composition of alloy and optimal regimes of alloying. A method based on iterative calculation is proposed.

References (16)

1. T. V. Rashev, A. V. Eliseev, L. T. Zhekova, P. V. Bogev. Izvestiya. Ferrous Metallurgy. 62 (7), 503 (2019). (in Russian) [Ц. В. Рашев, А. В. Елисеев, Л. Ц. Жекова, П. В. Богев. Известия высших учебных заведений. Черная металлургия. 62 (7), 503 (2019).]. Crossref
2. V. G. Gavriljuk, H. Berns. High Nitrogen Steels: Structure, Properties, Manufacture, Applications. New York, Springer (1999) 379 p. Crossref
3. G. Stein, I. Hucklenbroich. Journal Materials and Manufacturing Processes. 19 (1), 7 (2004). Crossref
4. High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications. 1st edn (Ed. by B. Raj). Cambridge, Woodhead Publishing (2004) 224 p.
5. M. O. Speidel. Materialwissenschaft und Werkstofftechnik. 37 (10), 875 (2006). Crossref
6. Yu. V. Kuznetsov, O. S. Muradyan, S. O. Muradyan. Metallurgist. 10, 32 (2021). (in Russian) [Ю. В. Кузнецов, О. С. Мурадян, С. О. Мурадян. Металлург. 10, 32 (2021).]. Crossref
7. S. O. Muradyan. XIII Russian Annual Conference of Young Researchers and Postgraduates “Physical Chemistry and Technology of Inorganic Materials”. Moscow, Russia (2017) p. 56. (in Russian) [С. О. Мурадян. ХIII Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов». Москва, Россия (2017) с. 56.].
8. G. Dorofeev, V. Karev, O. Goncharov, E. Kuzminykh, I. Sapegina, A. Lubnin, M. Mokrushina, V. Lad’yanov. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 50 (2), 632 (2019). Crossref
9. V. I. Lad’yanov, G. A. Dorofeev, E. V. Kuzminykh, V. A. Karev, A. N. Lubnin. Izvestiya. Ferrous Metallurgy. 62 (2), 154 (2019). (in Russian) [В. И. Ладьянов, Г. А. Дорофеев, Е. В. Кузьминых, В. А. Карев, А. Н. Лубнин. Известия высших учебных заведений. Черная металлургия. 62 (2), 154 (2019).]. Crossref
10. G. A. Dorofeev, V. A. Karev, E. V. Kuzminykh, V. I. Ladyanov, A. N. Lubnin, A. S. Vaulin, M. I. Mokrushin. Metals. 1, 3 (2013). (in Russian) [Г. А. Дорофеев, В. А. Карев, Е. В. Кузьминых, В. И. Ладьянов, А. Н. Лубнин, А. С. Ваулин, М. И. Мокрушина. Металлы. 1, 3 (2013).].
11. I. V. Sapegina, G. A. Dorofeev, M. I. Mokrushina, B. E. Pushkarev, V. I. Lad’yanov. Letters on materials. 7 (2), 137 (2017). (in Russian) [И. В. Сапегина, Г. А. Дорофеев, М. И. Мокрушина, Б. Е. Пушкарев, В. И. Ладьянов. Письма о материалах. 7 (2), 137 (2017).]. Crossref
12. M. V. Kostina, L. G. Riga. Izvestiya. Ferrous Metallurgy. 63 (8), 606 (2020). (in Russian) [М. В. Костина, Л. Г. Ригина. Известия высших учебных заведений. Черная металлургия. 63 (8), 606 (2020).]. Crossref
13. S. V. Gnedenkov, S. L. Sinebryukhov, V. S. Egorkin, I. E. Vyalyi, I. M. Imshinetsky, M. V. Kostina, S. O. Muradyan, V. I. Sergienko. Physical chemistry of the surface and protection of materials. 53 (15), 550 (2017). (in Russian) [С. В. Гнеденков, С. Л. Синебрюхов, В. С. Егоркин, И. Е. Вялый, И. М. Имшинецкий, М. В. Костина, С. О. Мурадян, В. И. Сергиенко. Физикохимия поверхности и защита материалов. 53 (5), 550 (2017).]. Crossref
14. CM. Kabishov, I. A. Trusova, P. E. Ratnikov, S. V. Korneev. Casting and metallurgy. 79 (2), 82 (2015). (in Russian) [С. М. Кабишов, И. А. Трусова, П. Э. Ратников, С. В. Корнеев. Литье и металлургия. 79 (2), 82 (2015).].
15. L. A. Smirnov, A. G. Gudov, S. P. Burmasov, A. S. Oryshchenko, G. Yu. Kalinin. Izvestiya. Ferrous Metallurgy. 63 (9), 679 (2020). (in Russian) [Л. А. Смирнов, А. Г. Гудов, С. П. Бурмасов, А. С. Орыщенко, Г. Ю. Калинин. Известия высших учебных заведений. Черная металлургия. 63 (9), 679 (2020).]. Crossref
16. M. V. Kostina, V. I. Krivorotov, V. S. Kostina, A. E. Kudryashov, S. O. Muradyan. Izvestiya. Ferrous Metallurgy. 64 (3), 217 (2021). (in Russian) [М. В. Костина, В. И. Криворотов, В. С. Костина, А. Э. Кудряшов, С. О. Мурадян. Известия высших учебных заведений. Черная Металлургия. 64 (3), 217 (2021).]. Crossref