Carbon matrix nanostructured composites as a new type of supercapacitor electrode materials

Y.A. Zakharov, G.Y. Simenyuk ORCID logo , T.O. Sergina, N.V. Ivanova ORCID logo , T.A. Larichev, I.Y. Zykov, Y.N. Dudnikova show affiliations and emails
Received 05 September 2022; Accepted 29 November 2022;
Citation: Y.A. Zakharov, G.Y. Simenyuk, T.O. Sergina, N.V. Ivanova, T.A. Larichev, I.Y. Zykov, Y.N. Dudnikova. Carbon matrix nanostructured composites as a new type of supercapacitor electrode materials. Lett. Mater., 2023, 13(1) 20-27
BibTex   https://doi.org/10.22226/2410-3535-2023-1-20-27

Abstract

The increase in the specific electrical capacitance of C-matrices as a result of the introduction of the most efficient fillers is 250–450%, depending on the type of matrix, filler, and potential scan rate.Carbon matrix nanocomposites C / Au and C / MnxOy are obtained by a reduction of HAuCl4 and KMnO4 precursor solutions with single-walled carbon nanotubes or highly porous carbon materials obtained by high-temperature alkaline activation of various metamorphism degree coals. The morphology of the nanocomposite materials is studied by the electron microscopy. It is found that the filler introduction slightly reduces the specific surface of matrices and, due to the blocking of meso- and micropore volumes, filler nanoparticles do not precipitate in the pores of a predominantly microporous matrix and partially decorate them in mixed-type matrices (meso- and micropores). Nanocomposites have been studied as supercapacitor electrode materials. It is established that decorating the matrix surface with both types fillers (Au, which increases the electrical double layer capacitance, and MnxOy, which is electrochemically active in a given potential window due to the occurrence of Red-Ox electrode processes) results in an increase in the supercapacitor electrodes capacitance. The most significant effect is observed for composites based on the SWCNT and highly porous Boghead in the region of high potential scan rates by a factor of 3.4 – 4.5, and in the region of low rates (2.5 – 2.8), depending on the filler. The results obtained allow one to consider the composites C / Au and C / MnxOy as promising materials for the development of SC electrodes.

References (29)

1. Z. Zhai, L. Zhang, T. Du, B. Ren, Y. Xu, S. Wang, J. Miao, Z. Liu. Mater. Des. 221, 111017 (2022). Crossref
2. R. Kumar, E. Joanni, S. Sahoo, J.-J. Shim, W. K. Tan, A. Matsuda, R. K. Singh. Carbon. 193, 298 (2022). Crossref
3. P. Xie, W. Yuan, X. Liu, Y. Peng, Y. Yin, Y. Li, Z. Wu. Energy Storage Mater. 36, 56 (2021). Crossref
4. R. Wang, X. Li, Z. Nie, Y. Zhao, H. Wang. J. Energy Storage. 38, 102479 (2021). Crossref
5. S. Kour, S. Tanwar, A. L. Sharma. Mater. Today Commun. 32, 104033 (2022). Crossref
6. G. Y. Simenyuk, Y. A. Zakharov, N. V. Pavelko, V. G. Dodonov, V. M. Pugachev, A. V. Puzynin, T. S. Manina, C. N. Barnakov, Z. R. Ismagilov. Catal. Today. 249, 220 (2015). Crossref
7. N. Afsarimanesh, A. Nag, Md. Eshrat e Alahi, S. Sarkar, S. Mukhopadhyay, G. S. Sabet, M. E. Altinsoy. Sens. Actuator A: Phys. 344, 113743 (2022). Crossref
8. E. Dhandapani, S. Thangarasu, S. Ramesh, K. Ramesh, R. Vasudevan, N. Duraisamy. J. Energy Storage. 52 (C), 104937 (2022). Crossref
9. Y. Zakharov, G. Simenyuk, V. Pugachev, V. Dodonov, T. Trosnyanskaya, Z. Ismagilov, E. Kachina, D. Yakubik. Energy Technol. 9 (11), 2100449 (2021). Crossref
10. Y. Fang, Q. Zhang, L. Cui. Microporous Mesoporous Mater. 314, 110870 (2021). Crossref
11. M. R. Predtechenskiy, A. A. Khasin, A. E. Bezrodny, O. F. Bobrenok, D. Y. Dubov, V. E. Muradyan, V. O. Saik, S. N. Smirnov. Carbon Trends. 8, 100175 (2022). Crossref
12. N. I. Fedorova, I. Y. Zykov, Z. R. Ismagilov. Coke Chem. 65 (5), 201 (2022). Crossref
13. G. Y. Simenyuk, Y. A. Zakharov, A. V. Puzynin, C. N. Barnakov, T. S. Manina, Z. R. Ismagilov, A. A. Vladimirov, N. V. Ivanova, V. M. Pugachev, V. G. Dodonov. Mater. Manufact. Proc. 31 (6), 739 (2016). Crossref
14. G. Y. Simenyuk, Y. A. Zakharov, V. M. Pugachev, V. G. Dodonov, T. O. Trosnyanskaya, T. S. Nechaeva, L. V. Ilkevich, E. S. Mikhailova, Z. R. Ismagilov. Chem. Sustain. Develop. 26 (6), 609 (2018).
15. T. A. Larichev, Yu. A. Zakharov, N. M. Fedorova, G. Yu. Simenyuk, V. M. Pugachev, V. G. Dodonov, D. G. Yakubik, T. O. Trosnyanskaya. Chem. Sustain. Develop. 29 (5), 552 (2021). Crossref
16. T. A. Larichev, N. M. Fedorova, Y. A. Zakharov, G. Y. Simenyuk, V. M. Pugachev, V. G. Dodonov, E. V. Kachina, E. S. Mikhailova. Chem. Sustain. Develop. 26 (6), 619 (2018).
17. S. A. Semenova, T. S. Manina, N. I. Fedorova, Z. R. Ismagilov, T. I. Gulyaeva, N. N. Leont’eva, V. A. Drozdov. Solid Fuel Chem. 47 (5), 292 (2013). Crossref
18. Y. A. Zakharov, G. Y. Simenyuk, T. S. Manina, C. N. Barnakov, V. M. Pugachev, V. G. Dodonov, N. V. Pavelko. Nanotechnol. Russ. 10 (5-6), 388 (2015). Crossref
19. Y. A. Zakharov, G. Y. Simenyuk, E. V. Kachina, Y. N. Dudnikova, V. G. Dodonov, Z. R. Ismagilov. Inorg. Mater. 57 (5), 487 (2021). Crossref
20. B. Ullah, Y. Cheng, L. Wang, W. Yang, I. M. Jiskani, B. Hu. Int. J. Coal Sci. Technol. 9 (1), 58 (2022). Crossref
21. R. Bardestani, G. S. Patience, S. Kaliaguine. Can. J. Chem. Eng. 97, 2781 (2019). Crossref
22. L. Leng, Q. Xiong, L. Yang, H. Li, Y. Zhou, W. Zhang, S. Jiang, H. Li, H. Huang. Sci. Total Environ. 763, 144204 (2021). Crossref
23. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing. Pure Appl. Chem. 87 (9-10), 1051 (2015). Crossref
24. Y. A. Zakharov, G. Y. Simenyuk, T. O. Trosnyanskaya, V. M. Pugachev, D. M. Russakov, T. A. Larichev. Chem. Sustain. Develop. 30 (5), 507 (2022).(in Russian) [Ю. А. Захаров 1, Г. Ю. Сименюк 1, Т. О. Троснянская 1, В. М. Пугачев 1, 2, Д. М. Руссаков 2, Т. А. Ларичев 1, 2. Химия в интересах устойчивого развития. 30 (5), 507 (2022).]. Crossref
25. C. Y. Foo, H. N. Lim, M. A. Mahdi, M. H. Wahid, N. M. Huang. Sci. Rep. 8, 7399 (2018). Crossref
26. K. N. Chaudhari, S. Chaudhari, J.-S. Yub. J. Electroanal. Chem. 761, 98 (2016). Crossref
27. P. M. Anjana, M. R. Bindhu, R. B. Rakhi. Mater. Sci. Energy Technol. 2 (3), 389 (2019). Crossref
28. R. R. Kannan, N. Lenin, A. A. Banu, M. Sivabharathy. Mater. Lett. 314, 131887 (2022). Crossref
29. B. S. Singu, E. S. Goda, K. R. Yoon. J. Ind. Eng. Chem. 97, 239 (2021). Crossref

Funding