Fracture features of impact samples of low-activation ferritic-martensitic steel EK-181 after high-temperature thermomechanical treatment

N.A. Polekhina, V.V. Linnik, I.Y. Litovchenko, K.V. Almaeva, V.M. Chernov, M.V. Leontieva-Smirnova show affiliations and emails
Received 15 September 2022; Accepted 20 October 2022;
Citation: N.A. Polekhina, V.V. Linnik, I.Y. Litovchenko, K.V. Almaeva, V.M. Chernov, M.V. Leontieva-Smirnova. Fracture features of impact samples of low-activation ferritic-martensitic steel EK-181 after high-temperature thermomechanical treatment. Lett. Mater., 2022, 12(4s) 451-456
BibTex   https://doi.org/10.22226/2410-3535-2022-4-451-456

Abstract

The features and fracture mechanisms of reactor low-activation ferritic-martensitic steel EK-181 after high-temperature thermomechanical treatment and traditional heat treatment are revealed depending on the impact test temperature in the range from -186 to 100°C. The fracture appearance transition temperature is determined by a fractographic investigation.A comparative fractographic investigation of fracture in the temperature range from −186 to 100°C of the Charpy impact samples is performed for the reactor low-activation ferritic-martensitic steel EK-181 after its high-temperature thermomechanical treatment (HTMT) and traditional heat treatment (THT). The mechanisms of steel fracture are revealed depending on the impact test temperature and treatment mode. On the upper and lower shelves of the impact toughness temperature curve, the steel fractures by the mechanism of transcrystalline ductile dimple fracture and transcrystalline quasi-cleavage, respectively. In the intermediate region (in ductile-brittle transition area), fracture occurs by a mixed mechanism. The transition temperature to the brittle state is determined, at which the proportion of ductile and brittle fractures is the same (after THT it is −3°C; after HTMT it is −14°C). It is established that HTMT significantly changes the type of fracture of the impact samples in comparison with THT. The microstructure formed during HTMT with hot deformation of austenite leads to the appearance of a crack-arrester type of delamination during the impact tests in the cold brittleness region, favoring an increase in the fracture toughness of the steel at a lower ductile-brittle transition temperature.

References (23)

1. R. G. Odette, S. J. Zinkle. Structural Alloys for Nuclear Energy Applications. Elsevier (2019) 655 p. Crossref
2. R. L. Klueh, A. T. Nelson. J. Nucl. Mater. 371 (1-3), 37 (2007). Crossref
3. F. A. Garner. Comprehensive Nuclear Materials 2nd edition. 3, 57 (2020). Crossref
4. J. Vivas, D. De-Castro, E. Altstadt, M. Houska, D. San-Martín, C. Capdevila. Mater. Sci. Eng. A. 793, 139799 (2020). Crossref
5. H. Mohrbacher. Metals. 8 (4), 234 (2018). Crossref
6. P. Fernandez, J. Hoffmann, M. Rieth, A. Gomez-Herrero. Mat. Charact. 180, 111443 (2021). Crossref
7. V. M. Chernov, G. N. Ermolaev, M. V. Leont’eva-Smirnova. Tech. phys. 7, 985 (2010). Crossref
8. A. N. Tyumentsev, E. G. Astafurova, I. Y. Litovchenko, V. M. Chernov, M. V. Leont’eva-Smirnova, N. A. Shevyako. Tech. phys. 1, 985 (2012). Crossref
9. R. Esterl, M. Sonnleitner, I. Weißensteiner, K. Hartl, R. Schnitzer. J Mater Sci. 54, 12875 (2019). Crossref
10. H. L. Haskel, E. Pauletti, J. P. Martins, A. L. M. de Carvalho. Mat. Res. 17 (5), 1238 (2014). Crossref
11. I. Litovchenko, K. Almaeva, N. Polekhina, S. Akkuzin, V. Linnik, E. Moskvichev, V. Chernov, M. Leontyeva-Smirnova. Met. 12, 79 (2022). Crossref
12. I. Yu. Litovchenko, N. A. Polekhina, A. N. Tyumentsev, E. G. Astafurova, V. M. Сhernov, M. V. Leontieva-Smirnova. J. Nucl. Mater. 455, 665 (2014). Crossref
13. N. A. Polekhina, I. Yu. Litovchenko, A. N. Tyumentsev, D. A. Kravchenko, V. M. Chernov, M. V. Leontyeva-Smirnova. Tech. Phys. 62 (5), 736 (2017). Crossref
14. N. A. Polekhina, I. Yu. Litovchenko, K. V. Almaeva, A. N. Tyumentsev, V. M. Chernov, M. V. Leontyeva-Smirnova. Inorg. Mater.: Applied Research. 13 (5), 1247 (2022). Crossref
15. N. A. Polekhina, V. V. Linnik, K. V. Almaeva, I. Yu. Litovchenko, A. N. Tymentsev, E. N. Moskvichev, V. M. Chernov, M. V. Leontyeva-Smirnova, N. A. Degtyarev, K. A. Moroz. Rus. Phys. J. 64 (12), 2225 (2022). Crossref
16. A. Pineau, A. A. Benzerga, T. Pardoen. Acta Mater. 107, 424 (2016). Crossref
17. G. V. Klevtsov, L. R. Botvina, N. A. Klevtsova, L. V. Limar. Fractodiagnostics of destruction of metallic materials and designs. Moscow, MISiS (2007) 264 p. (in Russian) [Г. В. Клевцов, Л. Р. Ботвина, Н. А. Клевцова, Л. В. Лимар. Москва, МИСиС (2007) 264 с.].
18. T. Maeda, S. Okuhata, K. Matsuda, T. Masumura, T. Tsuchiyama, H. Shirahata, Y. Kawamoto, M. Fujioka, R. Uemori. Mater. Sci. Eng. A. 812, 141058 (2021). Crossref
19. P. Modak, A. Ghosh, N. Rarhi, Vinod Kumar, R. Balamuralikrishnan, D. Chakrabarti. Metal News. 19, 21 (2016).
20. Y. Niu, S. Jia, Q. Liu, S. Tong, B. Li, Y. Ren, B. Wang. Mater. 12, 3672 (2019). Crossref
21. T. Inoue, Y. Kimura. Mater. 15, 867 (2022). Crossref
22. A. Ghosh, S. Patra, A. Chatterjee, D. Chakrabarti. Metall. Mater. Trans. A. 47 (6), 2755 (2016). Crossref
23. A. Chatterjee, A. Ghosh, A. Moitra, A. K. Bhaduri, R. Mitra, D. Chakrabarti. Int. J. Plast. 104, 104 (2018). Crossref

Funding

1. Russian Science Foundation - 21-79-00231