Influence of pre-heating temperature and ultrasonic vibration treatment on the structure and martensitic transformations in NiTi foams produced by SHS

N. Resnina, V. Rubanik jr., V. Rubanik, S. Belyaev, V. Bysha, V. Kalganov, D. Chepela ORCID logo show affiliations and emails
Received 20 April 2022; Accepted 19 May 2022;
Citation: N. Resnina, V. Rubanik jr., V. Rubanik, S. Belyaev, V. Bysha, V. Kalganov, D. Chepela. Influence of pre-heating temperature and ultrasonic vibration treatment on the structure and martensitic transformations in NiTi foams produced by SHS. Lett. Mater., 2022, 12(2) 164-168
BibTex   https://doi.org/10.22226/2410-3535-2022-2-164-168

Abstract

An ultrasonic treatment prevents the formation of cavities and allows to produce the NiTi sample at higher pre-heating temperature. An increase in pre-heating temperature increases the width of reacted  zone that leads to  efective infleunces of the USV on the sample structure.The structure and martensitic transformations in NiTi foams produced by self-propagating high-temperature synthesis under the action of ultrasonic vibrations (USV) at different pre-heating temperatures of the powder mixture are studied. It has been found that with an increase in the pre-heating temperature, the porous structure changes from layered to isotropic one in the NiTi foams, but cavities appear. The USV treatment reduces the number of cavities and increases the maximum pre-heating temperature at which they are not formed. It has been found that the USV treatment reduces the size and volume fraction of precipitates and makes the chemical composition of the NiTi phase more uniform that affects the martensitic transformation. It has been assumed that an increase in the pre-heating temperature compensates the heat transferred from the powder mixture outside the thermal chamber by the titanium waveguide, which increases the length of the reacted zone. This allowed USV to influence the structure formation in the NiTi foams in the same way as it was observed during conventional crystallization of Ti or Al-based alloys.

References (24)

1. M. H. Elahinia, M. Hashemi, M. Tabesh, S. B. Bhaduri. Progress in Materials Science. 57, 911 (2012). Crossref
2. J. Y. Xiong, Y. C. Li, X. J. Wang, P. D. Hodgson, C. E. Wen. J. Mech. Behav. Biomed. Mater. 1, 269 (2008). Crossref
3. K. Otsuka, X. Ren. Progr. Mater. Sci. 50, 511 (2005). Crossref
4. J. S. Nyman, H. Leng, X. N. Dongd, X. Wang. J. Mech. Behav. Biomed. Mater. 2, 613 (2009). Crossref
5. Y. Zhao, M. Taya, Y. Kang, A. Kawasaki. Acta Mater. 53, 337 (2005). Crossref
6. X. Liu, S. Wu, K. W. K. Yeung, Z. S. Xu, C. Y. Chung, P. K. Chu. J Mater. Eng. Pef. 21, 2553 (2012). Crossref
7. J. L. Xu, L. Z. Bao, A. H. Liu, X. J. Jin, Y. X. Tong, J. M. Luo, Z. C. Zhong, Y. F. Zheng. Mater. Sci. Eng. C. 46, 387 (2015). Crossref
8. B. Y. Li, L. J. Rong, Y. Y. Li, V. E. Gjunter. Acta Mater. 48, 3895 (2000). Crossref
9. V. E. Gyunter, Yu. F. Yasenchuk, A. A. Klopotov, V. N. Khodorenko. Tech. Phys. Lett. 26, 35 (2000). Crossref
10. V. N. Khodorenko, V. E. Gyunter. Russ. Phys. J. 51, 1090 (2008). Crossref
11. W. Sirikul, D. Nipon, S. Lek. Mater. Sci. Eng. A. 515, 93 (2009). Crossref
12. P. Bassani, P. Giuliani, A. Tuissi, C. Zanotti. J. Mater. Eng Pef. 18, 594 (2009). Crossref
13. G. Tosun, L. Ozler, M. Kaya, N. Orhan. J. Alloys Compd. 487, 605 (2009). Crossref
14. N. Resnina, S. Belyaev, A. Voronkov, V. Mozgunov, A. Krivosheev, I. Ostapov. Phys. Proc. 10, 11 (2010). Crossref
15. H-Q. Che, Y. Ma, Q-C. Fan. J. Mater. Sci. 46, 2437 (2011). Crossref
16. N. Resnina, S. Belayev, A. Voronkov. Intermetall. 32, 81 (2013). Crossref
17. C. A. Biffi, P. Bassani, Z. Sajedi, P. Giuliani, A. Tuissi. Mater. Lett. 193, 54 (2017). Crossref
18. V. N. Khodorenko, S. G. Anikeev, O. V. Kokorev, Yu. F. Yasenchuk, V. E. Gunther. Russ. Phys. J. 60, 1758 (2018). Crossref
19. S. G. Anikeev, V. N. Khodorenko, T. L. Chekalkin, N. V. Artyukhova, V. E. Gunther, A. V. Proskurin, J-H. Kang, J-S. Kim. Mater. Res. Express. 6, 026570 (2019). Crossref
20. N. Resnina, V. Rubanik jr., V. Rubanik, S. Belyaev, M. Kulak, D. Chepela, V. Kalganov. The influence of ultrasonic vibrations during self-propagating high-temperature synthesis on the structure and martensitic transformations in porous NiTi alloys. Collection of Abstracts of the International symposium on advanced materials and technologies. Minsk. Belarus (2021) 312 p. (in Russian) [Н. Н. Реснина, В. В. Рубаник мл., В. В. Рубаник, С. П. Беляев, М. М. Кулак, Д. В. Чепела, В. Д. Калганов. Влияние ультразвуковых колебаний при самораспространяющемся высокотемпературном синтезе на структуру и мартенситные переходы в пористом сплаве TiNi. Сборник тезисов международного симпозиума «Перспективные Материалы и Технологии». Минск, Беларусь (2021) 312 с.].
21. G. I. Eskin. Ultrason. Sonochem. 8, 319 (2001). Crossref
22. M. D. Luque de Castro, F. Priego-Capote. Ultrason. Sonochem. 14, 717 (2007). Crossref
23. H. Puga, S. Costa, J. Barbosa, S. Ribeiro, M. Prokic. J. Mater. Proces. Techn. 211, 1729 (2011). Crossref
24. R. Chen, D. Zheng, T. Ma, H. Ding, Y. Su, J. Guo, H. Fu. Scientific Reports. 7, 41463 (2017). Crossref

Funding

1. Russian Foundation for Basic Research - 20-58-00025
2. The Belarusian Republican Foundation for Fundamental Research - Т20Р-377