A study of the distribution of Au atoms in the LI2 superstructure of the Fe25Pd50Au25 alloy using field ion microscopy

Received 25 January 2022; Accepted 14 March 2022;
Citation: V.A. Ivchenko. A study of the distribution of Au atoms in the LI2 superstructure of the Fe25Pd50Au25 alloy using field ion microscopy. Lett. Mater., 2022, 12(2) 100-105
BibTex   https://doi.org/10.22226/2410-3535-2022-2-100-105

Abstract

(a) Scheme of an arbitrary pole of the sample surface (the edge of every round disc is made up of atoms at the step edges and atoms at the edge): A, C – atoms in the step edge; B – atom in the center of the plane (half of atoms bonds are broken); D – separately placed atom at the edge of the plane (has one non broken bond). 
(b) Field ion image of the disordered state of the alloy Fe25Pd50Au25. The statistical arrangement of atoms in the crystal lattice shows a chaotic contrast of the surface image.
(c) Field ion image of the ordered state of Fe25Pd50Au25 alloy. Fe and Au atoms provide contrast in the field ion image, Pd atoms do not provide contrast.The structural state of Fe-Pd-Au alloys has a significant effect on the physical properties and the character of the magnetic phase diagrams. This occurs due to changes in the competing exchange interactions between atoms. Based on the data obtained by the Mössbauer spectroscopy, two models of the distribution of gold atoms in the unit cell LI2 as a function of the annealing temperature during ordering were proposed. The first model describes the structure of the alloy after high-temperature annealing (970 K) and assumes a statistical distribution of Au atoms over all faces of the LI2 type unit cell. The second model describes the structure of the alloy after low-temperature annealing (720 K) and assumes that Au atoms occupy only the central nodes of the face-centered lattice in the palladium sublattice LI2, so that the entire superstructure becomes anisotropic. Here we present the results of field ion microscopy studies on the occupancy of specific nodes in the unit cell by gold atoms in the ternary ordered alloy Fe25Pd50Au25 exhibited the LI2 superlattice. Field ion microscopy (FIM) is used to obtain data on the settlement of nodes with gold atoms in the LI2 superstructure. It is established that Au atoms are equally likely to occupy nodes of face-centered faces in the LI2 lattice, so that the entire superstructure becomes isotropic.

References (22)

1. B. V. Ryzhenko, F. A. Sidorenko, P. V. Geld. B. V. Phys. Solid State. 33 (3), 741 (1991). (in Russian) [Б. В. Рыженко, Ф. А. Сидоренко, П. В. Гельд. Физика твердого тела. 33 (3), 741 (1991).].
2. B. V. Ryzhenko, S. V. Pridvizhkin, P. V. Geld. Hyperfine Interactions. 72 (4), 313 (1992). Crossref
3. B. V. Ryzhenko, S. V. Pridvizhkin, P. V. Geld. Journal of Magnetism and Magnetic Materials. 89 (1-2), 236 (1990). Crossref
4. S. V. Pridvizhkin, B. V. Ryzhenko, P. V. Geld. Soviet Physics Journal. 32 (8), 617 (1990).
5. B. V. Ryzhenko, B. Yu. Goloborodkyi, F. A. Sidorenko. Phys. Solid State. 26 (6), 1795 (1984). (in Russian) [Б. В. Рыженко, Б. Ю. Голобородский, Ф. А. Сидоренко. Физика твердого тела. 26 (6), 1795 (1984).].
6. D. G. Brandon. J Sci Instrum. 41, 373 (1964).
7. A. Cerezo, M. Hetherington, J. Hyde, M. Miller, G. Smith. Surf Sci. 280, 471 (1992).
8. F. Danoix, T. Epicier, F. Vurpillot, D. Blavette. J Mater Sci 47 (3), 1567 (2012). Crossref
9. M. Dagan, L. R. Hanna, A. Xu, S. G. Roberts, G. D. Smith et al. Ultramicroscopy. 159, 387 (2015).
10. R. Xu, C. C. Chen, L. Wu, M. C. Scott et al. Nat Mater. 14, 1099 (2015).
11. F. Vurpillot, M. Gilbert, B. Deconihout. Surf Interface Anal. 39, 273 (2007).
12. V. A. Ivchenko, N. N. Syutkin. The Physics of Metals and Metallography. 61 (3), 575 (1986). (in Russian) [В. А. Ивченко, Н. Н. Сюткин. Физика металлов и металловедение. 61 (3), 575 (1986).].
13. V. A. Ivchenko, N. N. Syutkin, A. Kvist, H.-O. Andrén, K. Stiller. Applied Surface Science. 94 - 95, 267 (1996). Crossref
14. A. U. Bunkin, V. A. Ivchenko, L. U. Kuznetsova, N. N. Syutkin. The Physics of Metals and Metallography. 7, 111 (1990). (in Russian) [А. Ю. Бункин, В. А. Ивченко, Л. Ю. Кузнецова, Н. Н. Сюткин. Физика металлов и металловедение. 7, 111 (1990).].
15. V. A. Ivchenko, N. N. Syutkin, Y. F. Talantsev. The Physics of Metals and Metallography. 69 (2), 118 (1990).
16. V. A. Ivchenko. Surface Science. 276 (1-3), 273 (1992).
17. N. N. Syutkin, V. A. Ivchenko, S. I. Noritsin, A. B. Telegin. Fizika metallov i metallovedeniye. 56 (4), 728 (1983). (in Russian) [Н. Н. Сюткин, В. А. Ивченко, С. И. Норицын, А. Б. Телегин. Физика металлов и металловедение. 56 (4), 728 (1983).].
18. V. A. Ivchenko, E. V. Popova, T. S. Gorskikb. The Physics of Metals and Metallography. 97 (2), 207 (2004).
19. N. N. Syutkin, V. A. Ivchenko, S. I. Noritsin. The Physics of Metals and Metallography. 57 (4), 776 (1984). (in Russian) [Н. Н. Сюткин, В. А. Ивченко, С. И. Норицын. Физика металлов и металловедение. 57 (4), 776 (1984).].
20. N. N. Syutkin, V. A. Ivchenko, S. I. Noritsyn. Phys. Solid State. 25 (10), 3055 (1983). (in Russian) [Н. Н. Сюткин, В. А. Ивченко, С. И. Норицын. Физика твердого тела. 25 (10), 3055 (1983).].
21. V. A. Ivchenko, E. I. Teytel, N. N. Syutkin. The Physics of Metals and Metallography. 52 (1), 164 (1981). (in Russian) [В. А. Ивченко, Е. И. Тейтель, Н. Н. Сюткин. Физика металлов и металловедение. 52 (1), 164 (1981).].
22. E. V. Myuller. Field Ionization and Field Ion Microscopy. Phys. Usp. 77, 481 (1962).